From 11c72b1132feca7c1252ea01d02da4cb497e723f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:38:58 +0000
Subject: [PATCH] testing on one image

---
 src/network.c |  570 ++++++++++++++++++++++++++++++++++++++------------------
 1 files changed, 388 insertions(+), 182 deletions(-)

diff --git a/src/network.c b/src/network.c
index faedb8c..68790e5 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,226 +1,325 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
 #include "utils.h"
 
+#include "crop_layer.h"
 #include "connected_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
+#include "detection_layer.h"
 #include "maxpool_layer.h"
+#include "cost_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "route_layer.h"
+
+char *get_layer_string(LAYER_TYPE a)
+{
+    switch(a){
+        case CONVOLUTIONAL:
+            return "convolutional";
+        case DECONVOLUTIONAL:
+            return "deconvolutional";
+        case CONNECTED:
+            return "connected";
+        case MAXPOOL:
+            return "maxpool";
+        case SOFTMAX:
+            return "softmax";
+        case DETECTION:
+            return "detection";
+        case DROPOUT:
+            return "dropout";
+        case CROP:
+            return "crop";
+        case COST:
+            return "cost";
+        case ROUTE:
+            return "route";
+        default:
+            break;
+    }
+    return "none";
+}
 
 network make_network(int n)
 {
-    network net;
+    network net = {0};
     net.n = n;
-    net.layers = calloc(net.n, sizeof(void *));
-    net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    net.layers = calloc(net.n, sizeof(layer));
+    #ifdef GPU
+    net.input_gpu = calloc(1, sizeof(float *));
+    net.truth_gpu = calloc(1, sizeof(float *));
+    #endif
     return net;
 }
 
-void forward_network(network net, double *input)
+void forward_network(network net, network_state state)
 {
     int i;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer(layer, input);
-            input = layer.output;
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            forward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            forward_deconvolutional_layer(l, state);
+        } else if(l.type == DETECTION){
+            forward_detection_layer(l, state);
+        } else if(l.type == CONNECTED){
+            forward_connected_layer(l, state);
+        } else if(l.type == CROP){
+            forward_crop_layer(l, state);
+        } else if(l.type == COST){
+            forward_cost_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            forward_softmax_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            forward_maxpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            forward_dropout_layer(l, state);
+        } else if(l.type == ROUTE){
+            forward_route_layer(l, net);
         }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
-        }
+        state.input = l.output;
     }
 }
 
-void update_network(network net, double step)
+void update_network(network net)
 {
     int i;
+    int update_batch = net.batch*net.subdivisions;
     for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer(layer, step, 0.9, .01);
-        }
-        else if(net.types[i] == MAXPOOL){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == SOFTMAX){
-            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer(layer, step, .9, 0);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
+        } else if(l.type == DECONVOLUTIONAL){
+            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
+        } else if(l.type == CONNECTED){
+            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
         }
     }
 }
 
-double *get_network_output_layer(network net, int i)
+float *get_network_output(network net)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output;
-    }
-    return 0;
-}
-double *get_network_output(network net)
-{
-    return get_network_output_layer(net, net.n-1);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].output;
 }
 
-double *get_network_delta_layer(network net, int i)
+float get_network_cost(network net)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta;
-    } else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta;
+    if(net.layers[net.n-1].type == COST){
+        return net.layers[net.n-1].output[0];
+    }
+    if(net.layers[net.n-1].type == DETECTION){
+        return net.layers[net.n-1].cost[0];
     }
     return 0;
 }
 
-double *get_network_delta(network net)
+int get_predicted_class_network(network net)
 {
-    return get_network_delta_layer(net, net.n-1);
+    float *out = get_network_output(net);
+    int k = get_network_output_size(net);
+    return max_index(out, k);
 }
 
-void learn_network(network net, double *input)
+void backward_network(network net, network_state state)
 {
     int i;
-    double *prev_input;
-    double *prev_delta;
+    float *original_input = state.input;
     for(i = net.n-1; i >= 0; --i){
         if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
+            state.input = original_input;
+            state.delta = 0;
         }else{
-            prev_input = get_network_output_layer(net, i-1);
-            prev_delta = get_network_delta_layer(net, i-1);
+            layer prev = net.layers[i-1];
+            state.input = prev.output;
+            state.delta = prev.delta;
         }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            learn_convolutional_layer(layer, prev_input);
-            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            learn_connected_layer(layer, prev_input);
-            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            backward_convolutional_layer(l, state);
+        } else if(l.type == DECONVOLUTIONAL){
+            backward_deconvolutional_layer(l, state);
+        } else if(l.type == MAXPOOL){
+            if(i != 0) backward_maxpool_layer(l, state);
+        } else if(l.type == DROPOUT){
+            backward_dropout_layer(l, state);
+        } else if(l.type == DETECTION){
+            backward_detection_layer(l, state);
+        } else if(l.type == SOFTMAX){
+            if(i != 0) backward_softmax_layer(l, state);
+        } else if(l.type == CONNECTED){
+            backward_connected_layer(l, state);
+        } else if(l.type == COST){
+            backward_cost_layer(l, state);
+        } else if(l.type == ROUTE){
+            backward_route_layer(l, net);
         }
     }
 }
 
-void train_network_batch(network net, batch b)
+float train_network_datum(network net, float *x, float *y)
+{
+    #ifdef GPU
+    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
+    #endif
+    network_state state;
+    state.input = x;
+    state.truth = y;
+    state.train = 1;
+    forward_network(net, state);
+    backward_network(net, state);
+    float error = get_network_cost(net);
+    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
+    return error;
+}
+
+float train_network_sgd(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        net.seen += batch;
+        get_random_batch(d, batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network(network net, data d)
+{
+    int batch = net.batch;
+    int n = d.X.rows / batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        net.seen += batch;
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
+
+float train_network_batch(network net, data d, int n)
 {
     int i,j;
-    int k = get_network_output_size(net);
-    int correct = 0;
-    for(i = 0; i < b.n; ++i){
-        show_image(b.images[i], "Input");
-        forward_network(net, b.images[i].data);
-        image o = get_network_image(net);
-        if(o.h) show_image_collapsed(o, "Output");
-        double *output = get_network_output(net);
-        double *delta = get_network_delta(net);
-        int max_k = 0;
-        double max = 0;
-        for(j = 0; j < k; ++j){
-            delta[j] = b.truth[i][j]-output[j];
-            if(output[j] > max) {
-                max = output[j];
-                max_k = j;
-            }
+    network_state state;
+    state.train = 1;
+    float sum = 0;
+    int batch = 2;
+    for(i = 0; i < n; ++i){
+        for(j = 0; j < batch; ++j){
+            int index = rand()%d.X.rows;
+            state.input = d.X.vals[index];
+            state.truth = d.y.vals[index];
+            forward_network(net, state);
+            backward_network(net, state);
+            sum += get_network_cost(net);
         }
-        if(b.truth[i][max_k]) ++correct;
-        printf("%f\n", (double)correct/(i+1));
-        learn_network(net, b.images[i].data);
-        update_network(net, .001);
-        if(i%100 == 0){
-            visualize_network(net);
-            cvWaitKey(100);
-        }
+        update_network(net);
     }
-    visualize_network(net);
-    print_network(net);
-    cvWaitKey(100);
-    printf("Accuracy: %f\n", (double)correct/b.n);
+    return (float)sum/(n*batch);
 }
 
-int get_network_output_size_layer(network net, int i)
+void set_batch_network(network *net, int b)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        image output = get_convolutional_image(layer);
-        return output.h*output.w*output.c;
+    net->batch = b;
+    int i;
+    for(i = 0; i < net->n; ++i){
+        net->layers[i].batch = b;
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        image output = get_maxpool_image(layer);
-        return output.h*output.w*output.c;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.outputs;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.inputs;
+}
+
+/*
+int resize_network(network net, int h, int w, int c)
+{
+    fprintf(stderr, "Might be broken, careful!!");
+    int i;
+    for (i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
+            resize_convolutional_layer(layer, h, w);
+            image output = get_convolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        } else if(net.types[i] == DECONVOLUTIONAL){
+            deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i];
+            resize_deconvolutional_layer(layer, h, w);
+            image output = get_deconvolutional_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else if(net.types[i] == MAXPOOL){
+            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
+            resize_maxpool_layer(layer, h, w);
+            image output = get_maxpool_image(*layer);
+            h = output.h;
+            w = output.w;
+            c = output.c;
+        }else if(net.types[i] == DROPOUT){
+            dropout_layer *layer = (dropout_layer *)net.layers[i];
+            resize_dropout_layer(layer, h*w*c);
+        }else{
+            error("Cannot resize this type of layer");
+        }
     }
     return 0;
 }
+*/
 
 int get_network_output_size(network net)
 {
-    int i = net.n-1;
-    return get_network_output_size_layer(net, i);
+    int i;
+    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
+    return net.layers[i].outputs;
+}
+
+int get_network_input_size(network net)
+{
+    return net.layers[0].inputs;
+}
+
+detection_layer get_network_detection_layer(network net)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.layers[i].type == DETECTION){
+            return net.layers[i];
+        }
+    }
+    fprintf(stderr, "Detection layer not found!!\n");
+    detection_layer l = {0};
+    return l;
 }
 
 image get_network_image_layer(network net, int i)
 {
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return get_convolutional_image(layer);
+    layer l = net.layers[i];
+    if (l.out_w && l.out_h && l.out_c){
+        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
     }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return get_maxpool_image(layer);
-    }
-    return make_empty_image(0,0,0);
+    image def = {0};
+    return def;
 }
 
 image get_network_image(network net)
@@ -230,52 +329,105 @@
         image m = get_network_image_layer(net, i);
         if(m.h != 0) return m;
     }
-    return make_empty_image(0,0,0);
+    image def = {0};
+    return def;
 }
 
 void visualize_network(network net)
 {
+    image *prev = 0;
     int i;
     char buff[256];
     for(i = 0; i < net.n; ++i){
         sprintf(buff, "Layer %d", i);
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            visualize_convolutional_filters(layer, buff);
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            prev = visualize_convolutional_layer(l, buff, prev);
         }
     } 
 }
 
+void top_predictions(network net, int k, int *index)
+{
+    int size = get_network_output_size(net);
+    float *out = get_network_output(net);
+    top_k(out, size, k, index);
+}
+
+
+float *network_predict(network net, float *input)
+{
+#ifdef GPU
+    if(gpu_index >= 0)  return network_predict_gpu(net, input);
+#endif
+
+    network_state state;
+    state.input = input;
+    state.truth = 0;
+    state.train = 0;
+    state.delta = 0;
+    forward_network(net, state);
+    float *out = get_network_output(net);
+    return out;
+}
+
+matrix network_predict_data_multi(network net, data test, int n)
+{
+    int i,j,b,m;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        for(m = 0; m < n; ++m){
+            float *out = network_predict(net, X);
+            for(b = 0; b < net.batch; ++b){
+                if(i+b == test.X.rows) break;
+                for(j = 0; j < k; ++j){
+                    pred.vals[i+b][j] += out[j+b*k]/n;
+                }
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
+matrix network_predict_data(network net, data test)
+{
+    int i,j,b;
+    int k = get_network_output_size(net);
+    matrix pred = make_matrix(test.X.rows, k);
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
+    for(i = 0; i < test.X.rows; i += net.batch){
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+        }
+        float *out = network_predict(net, X);
+        for(b = 0; b < net.batch; ++b){
+            if(i+b == test.X.rows) break;
+            for(j = 0; j < k; ++j){
+                pred.vals[i+b][j] = out[j+b*k];
+            }
+        }
+    }
+    free(X);
+    return pred;   
+}
+
 void print_network(network net)
 {
     int i,j;
     for(i = 0; i < net.n; ++i){
-        double *output;
-        int n = 0;
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            output = layer.output;
-            image m = get_convolutional_image(layer);
-            n = m.h*m.w*m.c;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            output = layer.output;
-            image m = get_maxpool_image(layer);
-            n = m.h*m.w*m.c;
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            output = layer.output;
-            n = layer.outputs;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            output = layer.output;
-            n = layer.inputs;
-        }
-        double mean = mean_array(output, n);
-        double vari = variance_array(output, n);
+        layer l = net.layers[i];
+        float *output = l.output;
+        int n = l.outputs;
+        float mean = mean_array(output, n);
+        float vari = variance_array(output, n);
         fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
         if(n > 100) n = 100;
         for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
@@ -283,3 +435,57 @@
         fprintf(stderr, "\n");
     }
 }
+
+void compare_networks(network n1, network n2, data test)
+{
+    matrix g1 = network_predict_data(n1, test);
+    matrix g2 = network_predict_data(n2, test);
+    int i;
+    int a,b,c,d;
+    a = b = c = d = 0;
+    for(i = 0; i < g1.rows; ++i){
+        int truth = max_index(test.y.vals[i], test.y.cols);
+        int p1 = max_index(g1.vals[i], g1.cols);
+        int p2 = max_index(g2.vals[i], g2.cols);
+        if(p1 == truth){
+            if(p2 == truth) ++d;
+            else ++c;
+        }else{
+            if(p2 == truth) ++b;
+            else ++a;
+        }
+    }
+    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
+    float num = pow((abs(b - c) - 1.), 2.);
+    float den = b + c;
+    printf("%f\n", num/den); 
+}
+
+float network_accuracy(network net, data d)
+{
+    matrix guess = network_predict_data(net, d);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+float *network_accuracies(network net, data d)
+{
+    static float acc[2];
+    matrix guess = network_predict_data(net, d);
+    acc[0] = matrix_topk_accuracy(d.y, guess,1);
+    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    free_matrix(guess);
+    return acc;
+}
+
+
+float network_accuracy_multi(network net, data d, int n)
+{
+    matrix guess = network_predict_data_multi(net, d, n);
+    float acc = matrix_topk_accuracy(d.y, guess,1);
+    free_matrix(guess);
+    return acc;
+}
+
+

--
Gitblit v1.10.0