From 11c72b1132feca7c1252ea01d02da4cb497e723f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 11 Jun 2015 22:38:58 +0000
Subject: [PATCH] testing on one image

---
 src/parser.c |  682 ++++++++++++++++++++++++++-----------------------------
 1 files changed, 323 insertions(+), 359 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index 2069753..2caf96e 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -7,12 +7,13 @@
 #include "crop_layer.h"
 #include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
 #include "maxpool_layer.h"
-#include "normalization_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
-#include "freeweight_layer.h"
+#include "detection_layer.h"
+#include "route_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -22,15 +23,17 @@
     list *options;
 }section;
 
+int is_network(section *s);
 int is_convolutional(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
 int is_maxpool(section *s);
 int is_dropout(section *s);
-int is_freeweight(section *s);
 int is_softmax(section *s);
 int is_crop(section *s);
 int is_cost(section *s);
-int is_normalization(section *s);
+int is_detection(section *s);
+int is_route(section *s);
 list *read_cfg(char *filename);
 
 void free_section(section *s)
@@ -65,270 +68,291 @@
     }
 }
 
-convolutional_layer *parse_convolutional(list *options, network *net, int count)
+typedef struct size_params{
+    int batch;
+    int inputs;
+    int h;
+    int w;
+    int c;
+} size_params;
+
+deconvolutional_layer parse_deconvolutional(list *options, size_params params)
 {
-    int h,w,c;
-    float learning_rate, momentum, decay;
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
+
+    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer.filters, c*n*size*size);
+    parse_data(biases, layer.biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(layer);
+    #endif
+    option_unused(options);
+    return layer;
+}
+
+convolutional_layer parse_convolutional(list *options, size_params params)
+{
     int n = option_find_int(options, "filters",1);
     int size = option_find_int(options, "size",1);
     int stride = option_find_int(options, "stride",1);
     int pad = option_find_int(options, "pad",0);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
-    parse_data(weights, layer->filters, c*n*size*size);
-    parse_data(biases, layer->biases, n);
+    parse_data(weights, layer.filters, c*n*size*size);
+    parse_data(biases, layer.biases, n);
     #ifdef GPU
-    push_convolutional_layer(*layer);
+    if(weights || biases) push_convolutional_layer(layer);
     #endif
     option_unused(options);
     return layer;
 }
 
-connected_layer *parse_connected(list *options, network *net, int count)
+connected_layer parse_connected(list *options, size_params params)
 {
-    int input;
-    float learning_rate, momentum, decay;
     int output = option_find_int(options, "output",1);
-    char *activation_s = option_find_str(options, "activation", "sigmoid");
+    char *activation_s = option_find_str(options, "activation", "logistic");
     ACTIVATION activation = get_activation(activation_s);
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
-        momentum = option_find_float_quiet(options, "momentum", net->momentum);
-        decay = option_find_float_quiet(options, "decay", net->decay);
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
+
+    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
+
     char *weights = option_find_str(options, "weights", 0);
     char *biases = option_find_str(options, "biases", 0);
-    parse_data(biases, layer->biases, output);
-    parse_data(weights, layer->weights, input*output);
+    parse_data(biases, layer.biases, output);
+    parse_data(weights, layer.weights, params.inputs*output);
     #ifdef GPU
-    push_connected_layer(*layer);
+    if(weights || biases) push_connected_layer(layer);
     #endif
     option_unused(options);
     return layer;
 }
 
-softmax_layer *parse_softmax(list *options, network *net, int count)
+softmax_layer parse_softmax(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    softmax_layer *layer = make_softmax_layer(net->batch, input);
+    int groups = option_find_int(options, "groups",1);
+    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
     option_unused(options);
     return layer;
 }
 
-cost_layer *parse_cost(list *options, network *net, int count)
+detection_layer parse_detection(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        input = option_find_int(options, "input",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 0);
+    int joint = option_find_int(options, "joint", 0);
+    int objectness = option_find_int(options, "objectness", 0);
+    int background = option_find_int(options, "background", 0);
+    detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
+    option_unused(options);
+    return layer;
+}
+
+cost_layer parse_cost(list *options, size_params params)
+{
     char *type_s = option_find_str(options, "type", "sse");
     COST_TYPE type = get_cost_type(type_s);
-    cost_layer *layer = make_cost_layer(net->batch, input, type);
+    cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
     option_unused(options);
     return layer;
 }
 
-crop_layer *parse_crop(list *options, network *net, int count)
+crop_layer parse_crop(list *options, size_params params)
 {
-    float learning_rate, momentum, decay;
-    int h,w,c;
     int crop_height = option_find_int(options, "crop_height",1);
     int crop_width = option_find_int(options, "crop_width",1);
     int flip = option_find_int(options, "flip",0);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-        learning_rate = option_find_float(options, "learning_rate", .001);
-        momentum = option_find_float(options, "momentum", .9);
-        decay = option_find_float(options, "decay", .0001);
-        net->learning_rate = learning_rate;
-        net->momentum = momentum;
-        net->decay = decay;
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before crop layer must output image.");
-    }
-    crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip);
+    float angle = option_find_float(options, "angle",0);
+    float saturation = option_find_float(options, "saturation",1);
+    float exposure = option_find_float(options, "exposure",1);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before crop layer must output image.");
+
+    crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
     option_unused(options);
-    return layer;
+    return l;
 }
 
-maxpool_layer *parse_maxpool(list *options, network *net, int count)
+maxpool_layer parse_maxpool(list *options, size_params params)
 {
-    int h,w,c;
     int stride = option_find_int(options, "stride",1);
     int size = option_find_int(options, "size",stride);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
-    }
-    maxpool_layer *layer = make_maxpool_layer(net->batch,h,w,c,size,stride);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
+
+    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
     option_unused(options);
     return layer;
 }
 
-freeweight_layer *parse_freeweight(list *options, network *net, int count)
+dropout_layer parse_dropout(list *options, size_params params)
 {
-    int input;
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
-    option_unused(options);
-    return layer;
-}
-
-dropout_layer *parse_dropout(list *options, network *net, int count)
-{
-    int input;
     float probability = option_find_float(options, "probability", .5);
-    if(count == 0){
-        net->batch = option_find_int(options, "batch",1);
-        input = option_find_int(options, "input",1);
-    }else{
-        input =  get_network_output_size_layer(*net, count-1);
-    }
-    dropout_layer *layer = make_dropout_layer(net->batch,input,probability);
+    dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
     option_unused(options);
     return layer;
 }
 
-normalization_layer *parse_normalization(list *options, network *net, int count)
+route_layer parse_route(list *options, size_params params, network net)
 {
-    int h,w,c;
-    int size = option_find_int(options, "size",1);
-    float alpha = option_find_float(options, "alpha", 0.);
-    float beta = option_find_float(options, "beta", 1.);
-    float kappa = option_find_float(options, "kappa", 1.);
-    if(count == 0){
-        h = option_find_int(options, "height",1);
-        w = option_find_int(options, "width",1);
-        c = option_find_int(options, "channels",1);
-        net->batch = option_find_int(options, "batch",1);
-    }else{
-        image m =  get_network_image_layer(*net, count-1);
-        h = m.h;
-        w = m.w;
-        c = m.c;
-        if(h == 0) error("Layer before convolutional layer must output image.");
+    char *l = option_find(options, "layers");   
+    int len = strlen(l);
+    if(!l) error("Route Layer must specify input layers");
+    int n = 1;
+    int i;
+    for(i = 0; i < len; ++i){
+        if (l[i] == ',') ++n;
     }
-    normalization_layer *layer = make_normalization_layer(net->batch,h,w,c,size, alpha, beta, kappa);
+
+    int *layers = calloc(n, sizeof(int));
+    int *sizes = calloc(n, sizeof(int));
+    for(i = 0; i < n; ++i){
+        int index = atoi(l);
+        l = strchr(l, ',')+1;
+        layers[i] = index;
+        sizes[i] = net.layers[index].outputs;
+    }
+    int batch = params.batch;
+
+    route_layer layer = make_route_layer(batch, n, layers, sizes);
+    
+    convolutional_layer first = net.layers[layers[0]];
+    layer.out_w = first.out_w;
+    layer.out_h = first.out_h;
+    layer.out_c = first.out_c;
+    for(i = 1; i < n; ++i){
+        int index = layers[i];
+        convolutional_layer next = net.layers[index];
+        if(next.out_w == first.out_w && next.out_h == first.out_h){
+            layer.out_c += next.out_c;
+        }else{
+            layer.out_h = layer.out_w = layer.out_c = 0;
+        }
+    }
+
     option_unused(options);
     return layer;
 }
 
+void parse_net_options(list *options, network *net)
+{
+    net->batch = option_find_int(options, "batch",1);
+    net->learning_rate = option_find_float(options, "learning_rate", .001);
+    net->momentum = option_find_float(options, "momentum", .9);
+    net->decay = option_find_float(options, "decay", .0001);
+    net->seen = option_find_int(options, "seen",0);
+    int subdivs = option_find_int(options, "subdivisions",1);
+    net->batch /= subdivs;
+    net->subdivisions = subdivs;
+
+    net->h = option_find_int_quiet(options, "height",0);
+    net->w = option_find_int_quiet(options, "width",0);
+    net->c = option_find_int_quiet(options, "channels",0);
+    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+    option_unused(options);
+}
+
 network parse_network_cfg(char *filename)
 {
     list *sections = read_cfg(filename);
-    network net = make_network(sections->size, 0);
-
     node *n = sections->front;
+    if(!n) error("Config file has no sections");
+    network net = make_network(sections->size - 1);
+    size_params params;
+
+    section *s = (section *)n->val;
+    list *options = s->options;
+    if(!is_network(s)) error("First section must be [net] or [network]");
+    parse_net_options(options, &net);
+
+    params.h = net.h;
+    params.w = net.w;
+    params.c = net.c;
+    params.inputs = net.inputs;
+    params.batch = net.batch;
+
+    n = n->next;
     int count = 0;
     while(n){
-        section *s = (section *)n->val;
-        list *options = s->options;
+        fprintf(stderr, "%d: ", count);
+        s = (section *)n->val;
+        options = s->options;
+        layer l = {0};
         if(is_convolutional(s)){
-            convolutional_layer *layer = parse_convolutional(options, &net, count);
-            net.types[count] = CONVOLUTIONAL;
-            net.layers[count] = layer;
+            l = parse_convolutional(options, params);
+        }else if(is_deconvolutional(s)){
+            l = parse_deconvolutional(options, params);
         }else if(is_connected(s)){
-            connected_layer *layer = parse_connected(options, &net, count);
-            net.types[count] = CONNECTED;
-            net.layers[count] = layer;
+            l = parse_connected(options, params);
         }else if(is_crop(s)){
-            crop_layer *layer = parse_crop(options, &net, count);
-            net.types[count] = CROP;
-            net.layers[count] = layer;
+            l = parse_crop(options, params);
         }else if(is_cost(s)){
-            cost_layer *layer = parse_cost(options, &net, count);
-            net.types[count] = COST;
-            net.layers[count] = layer;
+            l = parse_cost(options, params);
+        }else if(is_detection(s)){
+            l = parse_detection(options, params);
         }else if(is_softmax(s)){
-            softmax_layer *layer = parse_softmax(options, &net, count);
-            net.types[count] = SOFTMAX;
-            net.layers[count] = layer;
+            l = parse_softmax(options, params);
         }else if(is_maxpool(s)){
-            maxpool_layer *layer = parse_maxpool(options, &net, count);
-            net.types[count] = MAXPOOL;
-            net.layers[count] = layer;
-        }else if(is_normalization(s)){
-            normalization_layer *layer = parse_normalization(options, &net, count);
-            net.types[count] = NORMALIZATION;
-            net.layers[count] = layer;
+            l = parse_maxpool(options, params);
+        }else if(is_route(s)){
+            l = parse_route(options, params, net);
         }else if(is_dropout(s)){
-            dropout_layer *layer = parse_dropout(options, &net, count);
-            net.types[count] = DROPOUT;
-            net.layers[count] = layer;
-        }else if(is_freeweight(s)){
-            freeweight_layer *layer = parse_freeweight(options, &net, count);
-            net.types[count] = FREEWEIGHT;
-            net.layers[count] = layer;
+            l = parse_dropout(options, params);
+            l.output = net.layers[count-1].output;
+            l.delta = net.layers[count-1].delta;
+            #ifdef GPU
+            l.output_gpu = net.layers[count-1].output_gpu;
+            l.delta_gpu = net.layers[count-1].delta_gpu;
+            #endif
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
+        net.layers[count] = l;
         free_section(s);
-        ++count;
         n = n->next;
+        if(n){
+            params.h = l.out_h;
+            params.w = l.out_w;
+            params.c = l.out_c;
+            params.inputs = l.outputs;
+        }
+        ++count;
     }   
     free_list(sections);
     net.outputs = get_network_output_size(net);
@@ -344,11 +368,25 @@
 {
     return (strcmp(s->type, "[cost]")==0);
 }
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
             || strcmp(s->type, "[convolutional]")==0);
 }
+int is_network(section *s)
+{
+    return (strcmp(s->type, "[net]")==0
+            || strcmp(s->type, "[network]")==0);
+}
 int is_connected(section *s)
 {
     return (strcmp(s->type, "[conn]")==0
@@ -363,26 +401,21 @@
 {
     return (strcmp(s->type, "[dropout]")==0);
 }
-int is_freeweight(section *s)
-{
-    return (strcmp(s->type, "[freeweight]")==0);
-}
 
 int is_softmax(section *s)
 {
     return (strcmp(s->type, "[soft]")==0
             || strcmp(s->type, "[softmax]")==0);
 }
-int is_normalization(section *s)
+int is_route(section *s)
 {
-    return (strcmp(s->type, "[lrnorm]")==0
-            || strcmp(s->type, "[localresponsenormalization]")==0);
+    return (strcmp(s->type, "[route]")==0);
 }
 
 int read_option(char *s, list *options)
 {
-    int i;
-    int len = strlen(s);
+    size_t i;
+    size_t len = strlen(s);
     char *val = 0;
     for(i = 0; i < len; ++i){
         if(s[i] == '='){
@@ -422,7 +455,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -432,173 +465,104 @@
     return sections;
 }
 
-void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
+void save_weights(network net, char *filename)
 {
-    int i;
-    fprintf(fp, "[convolutional]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
-    fprintf(fp, "filters=%d\n"
-            "size=%d\n"
-            "stride=%d\n"
-            "pad=%d\n"
-            "activation=%s\n",
-            l->n, l->size, l->stride, l->pad,
-            get_activation_string(l->activation));
-    fprintf(fp, "biases=");
-    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
-    fprintf(fp, "\n");
-    fprintf(fp, "weights=");
-    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
-{
-    fprintf(fp, "[freeweight]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
-    }
-    fprintf(fp, "\n");
-}
-
-void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
-{
-    fprintf(fp, "[dropout]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    }
-    fprintf(fp, "probability=%g\n\n", l->probability);
-}
-
-void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
-{
-    int i;
-    fprintf(fp, "[connected]\n");
-    if(count == 0){
-        fprintf(fp, "batch=%d\n"
-                "input=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
-    } else {
-        if(l->learning_rate != net.learning_rate)
-            fprintf(fp, "learning_rate=%g\n", l->learning_rate);
-        if(l->momentum != net.momentum)
-            fprintf(fp, "momentum=%g\n", l->momentum);
-        if(l->decay != net.decay)
-            fprintf(fp, "decay=%g\n", l->decay);
-    }
-    fprintf(fp, "output=%d\n"
-            "activation=%s\n",
-            l->outputs,
-            get_activation_string(l->activation));
-    fprintf(fp, "biases=");
-    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
-    fprintf(fp, "\n");
-    fprintf(fp, "weights=");
-    for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
-    fprintf(fp, "\n\n");
-}
-
-void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
-{
-    fprintf(fp, "[crop]\n");
-    if(count == 0) {
-        fprintf(fp,   "batch=%d\n"
-                "height=%d\n"
-                "width=%d\n"
-                "channels=%d\n"
-                "learning_rate=%g\n"
-                "momentum=%g\n"
-                "decay=%g\n",
-                l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
-    }
-    fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
-}
-
-void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
-{
-    fprintf(fp, "[maxpool]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
-}
-
-void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
-{
-    fprintf(fp, "[localresponsenormalization]\n");
-    if(count == 0) fprintf(fp,   "batch=%d\n"
-            "height=%d\n"
-            "width=%d\n"
-            "channels=%d\n",
-            l->batch,l->h, l->w, l->c);
-    fprintf(fp, "size=%d\n"
-            "alpha=%g\n"
-            "beta=%g\n"
-            "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
-}
-
-void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
-{
-    fprintf(fp, "[softmax]\n");
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
-{
-    fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
-    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
-    fprintf(fp, "\n");
-}
-
-
-void save_network(network net, char *filename)
-{
+    fprintf(stderr, "Saving weights to %s\n", filename);
     FILE *fp = fopen(filename, "w");
     if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
     int i;
-    for(i = 0; i < net.n; ++i)
-    {
-        if(net.types[i] == CONVOLUTIONAL)
-            print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
-        else if(net.types[i] == CONNECTED)
-            print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
-        else if(net.types[i] == CROP)
-            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
-        else if(net.types[i] == MAXPOOL)
-            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
-        else if(net.types[i] == FREEWEIGHT)
-            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
-        else if(net.types[i] == DROPOUT)
-            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
-        else if(net.types[i] == NORMALIZATION)
-            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
-        else if(net.types[i] == SOFTMAX)
-            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
-        else if(net.types[i] == COST)
-            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(l);
+            }
+#endif
+            int num = l.n*l.c*l.size*l.size;
+            fwrite(l.biases, sizeof(float), l.n, fp);
+            fwrite(l.filters, sizeof(float), num, fp);
+        }
+        if(l.type == DECONVOLUTIONAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_deconvolutional_layer(l);
+            }
+#endif
+            int num = l.n*l.c*l.size*l.size;
+            fwrite(l.biases, sizeof(float), l.n, fp);
+            fwrite(l.filters, sizeof(float), num, fp);
+        }
+        if(l.type == CONNECTED){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(l);
+            }
+#endif
+            fwrite(l.biases, sizeof(float), l.outputs, fp);
+            fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+        }
     }
     fclose(fp);
 }
 
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Loading weights from %s...", filename);
+    fflush(stdout);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        layer l = net->layers[i];
+        if(l.type == CONVOLUTIONAL){
+            int num = l.n*l.c*l.size*l.size;
+            fread(l.biases, sizeof(float), l.n, fp);
+            fread(l.filters, sizeof(float), num, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(l);
+            }
+#endif
+        }
+        if(l.type == DECONVOLUTIONAL){
+            int num = l.n*l.c*l.size*l.size;
+            fread(l.biases, sizeof(float), l.n, fp);
+            fread(l.filters, sizeof(float), num, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(l);
+            }
+#endif
+        }
+        if(l.type == CONNECTED){
+            fread(l.biases, sizeof(float), l.outputs, fp);
+            fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(l);
+            }
+#endif
+        }
+    }
+    fprintf(stderr, "Done!\n");
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
+

--
Gitblit v1.10.0