From 11dbac57e92e8ecfc1f064193228f1ad9afaf303 Mon Sep 17 00:00:00 2001
From: SpeedProg <speedprog@googlemail.com>
Date: Thu, 02 Jan 2020 16:04:02 +0000
Subject: [PATCH] removed weights

---
 opencv_dnn.py |  282 +++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 238 insertions(+), 44 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
old mode 100644
new mode 100755
index 7801bc3..4b2c4e0
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -9,7 +9,7 @@
 import pandas as pd
 from PIL import Image
 import time
-
+from multiprocessing import Pool
 from config import Config
 import fetch_data
 
@@ -22,25 +22,14 @@
 https://github.com/hj3yoo/mtg_card_detector/tree/dea64611730c84a59c711c61f7f80948f82bcd31 
 """
 
-
-def calc_image_hashes(card_pool, save_to=None, hash_size=None):
-    """
-    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
-    :param card_pool: pandas dataframe containing all card information
-    :param save_to: path for the pickle file to be saved
-    :param hash_size: param for pHash algorithm
-    :return: pandas dataframe
-    """
-    if hash_size is None:
-        hash_size = [16, 32]
-    elif isinstance(hash_size, int):
-        hash_size = [hash_size]
-    
-    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
+def do_calc(args):
+    card_pool = args[0]
+    hash_size = args[1]
     new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
     for hs in hash_size:
-            new_pool['card_hash_%d' % hs] = np.NaN
-            #new_pool['art_hash_%d' % hs] = np.NaN
+        new_pool['card_hash_%d' % hs] = np.NaN
+        new_pool['set_hash_%d' % 64] = np.NaN
+        #new_pool['art_hash_%d' % hs] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
             print('Calculating hashes: %dth card' % ind)
@@ -60,28 +49,81 @@
         for card_name in card_names:
             # Fetch the image - name can be found based on the card's information
             card_info['name'] = card_name
+            cname = card_name
+            if cname == 'con':
+                cname == 'con__'
             img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
                                                          card_info['collector_number'],
-                                                         fetch_data.get_valid_filename(card_info['name']))
+                                                         fetch_data.get_valid_filename(cname))
             card_img = cv2.imread(img_name)
 
             # If the image doesn't exist, download it from the URL
             if card_img is None:
+                set_name = card_info['set']
+                if set_name == 'con':
+                    set_name = 'con__'
                 fetch_data.fetch_card_image(card_info,
-                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, card_info['set']))
+                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name))
                 card_img = cv2.imread(img_name)
             if card_img is None:
                 print('WARNING: card %s is not found!' % img_name)
-
+                continue
+            """
+            img_cc = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
+            img_thresh = cv2.adaptiveThreshold(img_cc, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5)
+            # Dilute the image, then erode them to remove minor noises
+            kernel = np.ones((3, 3), np.uint8)
+            img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
+            img_erode = cv2.erode(img_dilate, kernel, iterations=1)
+            cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+            cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
+            cnts2 = cnts2[:10]
+            if True:
+                cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3)
+                #cv2.imshow('Contours', card_img)
+                #cv2.waitKey(10000)
+            """
+            set_img = card_img[595:635, 600:690]
+            #cv2.imshow(card_info['name'], set_img)
             # Compute value of the card's perceptual hash, then store it to the database
             #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
             img_card = Image.fromarray(card_img)
+            img_set = Image.fromarray(set_img)
+            #cv2.imshow('Set' + card_names[0], set_img)
             for hs in hash_size:
                 card_hash = ih.phash(img_card, hash_size=hs)
+                set_hash = ih.whash(img_set, hash_size=64)
                 card_info['card_hash_%d' % hs] = card_hash
+                card_info['set_hash_%d' % 64] = set_hash
+                #print('Setting set_hash_%d' % hs)
                 #art_hash = ih.phash(img_art, hash_size=hs)
                 #card_info['art_hash_%d' % hs] = art_hash
             new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
+    return new_pool
+
+def calc_image_hashes(card_pool, save_to=None, hash_size=None):
+    """
+    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
+    :param card_pool: pandas dataframe containing all card information
+    :param save_to: path for the pickle file to be saved
+    :param hash_size: param for pHash algorithm
+    :return: pandas dataframe
+    """
+    if hash_size is None:
+        hash_size = [16, 32]
+    elif isinstance(hash_size, int):
+        hash_size = [hash_size]
+
+    num_cores = 16
+    num_partitions = round(card_pool.shape[0]/1000)
+    if num_partitions < min(num_cores, card_pool.shape[0]):
+        num_partitions = min(num_cores, card_pool.shape[0])
+    pool = Pool(num_cores)
+    df_split = np.array_split(card_pool, num_partitions)
+    new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split]))
+    pool.close()
+    pool.join()
+    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
 
     if save_to is not None:
         new_pool.to_pickle(save_to)
@@ -197,7 +239,7 @@
     return corrected
 
 
-def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000):
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False):
     """
     Find contours of all cards in the image
     :param img: source image
@@ -209,19 +251,29 @@
     # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     img_blur = cv2.medianBlur(img_gray, 5)
-    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
-
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c)
+    if debug:
+        cv2.imshow('Thres', img_thresh)
     # Dilute the image, then erode them to remove minor noises
     kernel = np.ones(kernel_size, np.uint8)
     img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
     img_erode = cv2.erode(img_dilate, kernel, iterations=1)
-
+    if debug:
+        cv2.imshow('Eroded', img_erode)
     # Find the contour
-    _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     if len(cnts) == 0:
-        #print('no contours')
+        print('no contours')
         return []
-
+    img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
+    img_cont_base = img_cont.copy()
+    cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
+    cnts2 = cnts2[:10]
+    for i in range(0, len(cnts2)):
+        print(i, len(cnts2[i]))
+    if debug:
+        cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
+        cv2.imshow('Contours', img_cont)
     # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
     # their previous and next node
     # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
@@ -237,8 +289,47 @@
         size = cv2.contourArea(cnt)
         peri = cv2.arcLength(cnt, True)
         approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
+        print('Base Size:', size)
+        print('Len Approx:', len(approx))
         if size >= size_thresh and len(approx) == 4:
-            cnts_rect.append(approx)
+            # lets see if we got a contour very close in size as child
+            if i_child != -1:
+                img_ccont = img_cont_base.copy()
+                # lets collect all children
+                c_list = [cnts[i_child]]
+                h_info = hier[0][i_child]
+                while h_info[0] != -1:
+                    cld = cnts[h_info[0]]
+                    c_list.append(cld)
+                    h_info = hier[0][h_info[0]]
+                # child with biggest area
+                c_list.sort(key=cv2.contourArea, reverse=True)
+                c_cnt = c_list[0]  # the biggest child
+                if debug:
+                    cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
+                    cv2.imshow('CCont', img_ccont)
+                c_size = cv2.contourArea(c_cnt)
+                c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
+                if len(c_approx) == 4 and (c_size/size) > 0.85:
+                    rect = cv2.minAreaRect(c_cnt)
+                    box = cv2.boxPoints(rect)
+                    box = np.intp(box)
+                    print(c_cnt)
+                    print(box)
+
+                    print('CSize:', c_size, '%:', c_size/size)
+                    b2 = []
+                    for x in box:
+                        b2.append([x])
+                    cnts_rect.append(np.array(b2))
+                else:
+                    print('CF:', (c_size/size))
+                    print('Size:', size)
+                    cnts_rect.append(approx)
+            else:
+                #print('CF:', (c_size/size))
+                print('Size:', size)
+                cnts_rect.append(approx)
         else:
             if i_child != -1:
                 stack.append((i_child, hier[0][i_child]))
@@ -323,8 +414,10 @@
     img_result = img.copy()  # For displaying and saving
     det_cards = []
     # Detect contours of all cards in the image
-    cnts = find_card(img_result, size_thresh=size_thresh)
+    cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
+    print('Countours:', len(cnts))
     for i in range(len(cnts)):
+        print('Contour', i)
         cnt = cnts[i]
         # For the region of the image covered by the contour, transform them into a rectangular image
         pts = np.float32([p[0] for p in cnt])
@@ -342,15 +435,50 @@
         card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
         '''
         img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+        img_card_size = img_warp.shape
+        print(img_card_size)
+        cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)]
+        print(cut)
+        img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
+        print(img_set_part.shape)
+        img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
+        print('img set')
+        if debug:
+            cv2.imshow("Set Img#%d" % i, img_set_part)
+
         # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
         card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
         card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size]
         card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash))
         min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
+        hash_diff = min_card['hash_diff']
+
+        top_matches = sorted(card_pool['hash_diff'])
+        card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0]
+        card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0]
+
+        if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']:
+            set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
+            cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
+            print(list(card_pool.columns.values))
+            candidates = []
+            for ix in range(0, 2):
+                cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
+                cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd
+                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
+
+
+            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % 64]
+            cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
+            conf = sorted(cd_data['set_hash_diff'])
+            print('Confs:', conf)
+            best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
+            print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
+
+            min_card = best_match
         card_name = min_card['name']
         card_set = min_card['set']
         det_cards.append((card_name, card_set))
-        hash_diff = min_card['hash_diff']
 
         # Render the result, and display them if needed
         cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
@@ -358,20 +486,21 @@
                     cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
         if debug:
             # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
-            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 20),
+            cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20),
                         cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
             cv2.imshow('card#%d' % i, img_warp)
     if display:
         cv2.imshow('Result', img_result)
-        cv2.waitKey(0)
+        inp = cv2.waitKey(0)
 
     if out_path is not None:
+        print(out_path)
         cv2.imwrite(out_path, img_result.astype(np.uint8))
     return det_cards, img_result
 
 
 def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
-                 out_path=None, display=True, show_graph=True, debug=False):
+                 out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0):
     """
     Identify all cards in the continuous video stream, display or save the result if needed
     :param capture: input video stream
@@ -388,8 +517,9 @@
     # Get the dimension of the output video, and set it up
     if show_graph:
         img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
-        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
-        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x  + img_graph.shape[1]
+        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0])
+        height += 200  # some space to display last detected cards
     else:
         width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
         height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
@@ -398,9 +528,15 @@
     max_num_obj = 0
     f_len = 10  # number of frames to consider to check for existing cards
     exist_cards = {}
+
+    exist_card_single = {}
+    written_out_cards = set()
+    found_cards = []
     try:
         while True:
             ret, frame = capture.read()
+            croped_img = frame[crop_y:-crop_y, crop_x:-crop_x]
+            fimg = cv2.flip(croped_img, -1)
             start_time = time.time()
             if not ret:
                 # End of video
@@ -408,7 +544,7 @@
                 cv2.waitKey(0)
                 break
             # Detect all cards from the current frame
-            det_cards, img_result = detect_frame(frame, card_pool, hash_size=hash_size, size_thresh=size_thresh,
+            det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh,
                                                  out_path=None, display=False, debug=debug)
             if show_graph:
                 # If the card was already detected in the previous frame, append 1 to the list
@@ -430,18 +566,50 @@
                     else:
                         exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
                     if len(val) == f_len and sum(val) == 0:
-                        gone.append(key)
+                        gone.append(key)  # not there anymore
+
+                det_card_map = {}
+                gone_single =  []
+                for card_name, card_set in det_cards:
+                    skey = '%s (%s)' % (card_name, card_set)
+                    det_card_map[skey] = (card_name, card_set)
+
+                for key, val in exist_card_single.items():
+                    if key in det_card_map:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1]
+                    else:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0]
+
+                    if len(val) == f_len and sum(val) == 0:
+                        gone_single.append(key)
+                        if key in written_out_cards:
+                            written_out_cards.remove(key)
+                    if len(val) == f_len and sum(val) == f_len:
+                        if key not in written_out_cards and key in det_card_map:
+                            written_out_cards.add(key)
+                            found_cards.append(det_card_map[key])
+
+                for key in det_card_map:
+                    if key not in exist_card_single.keys():
+                        exist_card_single[key] = [1]
+                for key in gone_single:
+                    exist_card_single.pop(key)
+
+
                 for key in det_cards_list:
                     if key not in exist_cards.keys():
                         exist_cards[key] = [1]
                 for key in gone:
                     exist_cards.pop(key)
 
+
                 # Draw the graph based on the history of detected cards, then concatenate it with the result image
                 img_graph = draw_card_graph(exist_cards, card_pool, f_len)
                 img_save = np.zeros((height, width, 3), dtype=np.uint8)
                 img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
                 img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
+                for c, card in enumerate(reversed(found_cards[-10:]), 1):
+                    cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
             else:
                 img_save = img_result
 
@@ -457,17 +625,26 @@
             print('Elapsed time: %.2f ms' % elapsed_ms)
             if out_path is not None:
                 vid_writer.write(img_save.astype(np.uint8))
-            cv2.waitKey(1)
+            inp = cv2.waitKey(0)
+            if 'q' == chr(inp & 255):
+                break
     except KeyboardInterrupt:
         capture.release()
         if out_path is not None:
             vid_writer.release()
         cv2.destroyAllWindows()
 
+        with open('detect.txt', 'w') as of:
+            counter = collections.Counter(found_cards)
+            for key in counter:
+                of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n')
+
+
 
 def main(args):
     # Specify paths for all necessary files
-
+    hash_sizes = {16, 32}
+    hash_sizes.add(args.hash_size)
     pck_path = os.path.abspath('card_pool.pck')
     if os.path.isfile(pck_path):
         card_pool = pd.read_pickle(pck_path)
@@ -476,15 +653,23 @@
         # Merge database for all cards, then calculate pHash values of each, store them
         df_list = []
         for set_name in Config.all_set_list:
+            if set_name == 'con':
+                set_name = 'con__'
             csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name)
             df = fetch_data.load_all_cards_text(csv_name)
             df_list.append(df)
         card_pool = pd.concat(df_list, sort=True)
         card_pool.reset_index(drop=True, inplace=True)
         card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
-        calc_image_hashes(card_pool, save_to=pck_path)
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes)
     ch_key = 'card_hash_%d' % args.hash_size
-    card_pool = card_pool[['name', 'set', 'collector_number', ch_key]]
+    set_key = 'set_hash_%d' % 64
+    if ch_key not in card_pool.columns:
+        # we did not generate this hash_size yet
+        print('We need to add hash_size=%d' % (args.hash_size,))
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=[args.hash_size])
+
+    card_pool = card_pool[['name', 'set', 'collector_number', ch_key, set_key]]
 
     # Processing time is almost linear to the size of the database
     # Program can be much faster if the search scope for the card can be reduced
@@ -493,12 +678,19 @@
     # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
     # significantly increases speed for subtracting hashes in the future.
     card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
+    card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten())
 
     # If the test file isn't given, use webcam to capture video
     if args.in_path is None:
-        capture = cv2.VideoCapture(0)
+        capture = cv2.VideoCapture(0, cv2.CAP_V4L)
+        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
+        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
+        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
+
+        thres = int(((1920-2*500)*(1080-2*200)*0.3))
+        print('Threshold:', thres)
         detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
-                     display=args.display, show_graph=args.show_graph, debug=args.debug)
+                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200, size_thresh=thres)
         capture.release()
     else:
         # Save the detection result if args.out_path is provided
@@ -516,6 +708,8 @@
         if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
             # Test file is an image
             img = cv2.imread(args.in_path)
+            if img is None:
+                print('Could not read', args.in_path)
             detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
                          debug=args.debug)
         else:

--
Gitblit v1.10.0