From 11dbac57e92e8ecfc1f064193228f1ad9afaf303 Mon Sep 17 00:00:00 2001
From: SpeedProg <speedprog@googlemail.com>
Date: Thu, 02 Jan 2020 16:04:02 +0000
Subject: [PATCH] removed weights

---
 opencv_dnn.py |  852 ++++++++++++++++++++++++++++++++++----------------------
 1 files changed, 514 insertions(+), 338 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
old mode 100644
new mode 100755
index 03d4cc5..4b2c4e0
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -1,34 +1,43 @@
-import cv2
-import numpy as np
-import pandas as pd
-import imagehash as ih
-import os
+import argparse
 import ast
-import sys
-import math
-import random
 import collections
+import cv2
+import imagehash as ih
+import numpy as np
 from operator import itemgetter
-import time
+import os
+import pandas as pd
 from PIL import Image
+import time
+from multiprocessing import Pool
+from config import Config
 import fetch_data
-import transform_data
-
-card_width = 315
-card_height = 440
 
 
-def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
+"""
+As of the current version, the YOLO network has been removed from this code during optimization.
+It was found out that YOLO was adding too much processing delay, and the benefits from using it couldn't justify
+such heavy cost.
+If you're interested to see the implementation using YOLO, please check out the previous commit:
+https://github.com/hj3yoo/mtg_card_detector/tree/dea64611730c84a59c711c61f7f80948f82bcd31 
+"""
+
+def do_calc(args):
+    card_pool = args[0]
+    hash_size = args[1]
     new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
-    new_pool['card_hash'] = np.NaN
-    new_pool['art_hash'] = np.NaN
+    for hs in hash_size:
+        new_pool['card_hash_%d' % hs] = np.NaN
+        new_pool['set_hash_%d' % 64] = np.NaN
+        #new_pool['art_hash_%d' % hs] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
-            print(ind)
+            print('Calculating hashes: %dth card' % ind)
 
         card_names = []
+        # Double-faced cards have a different json format than normal cards
         if card_info['layout'] in ['transform', 'double_faced_token']:
-            if isinstance(card_info['card_faces'], str):  # For some reason, dict isn't being parsed in the previous step
+            if isinstance(card_info['card_faces'], str):
                 card_faces = ast.literal_eval(card_info['card_faces'])
             else:
                 card_faces = card_info['card_faces']
@@ -38,30 +47,84 @@
             card_names.append(card_info['name'])
 
         for card_name in card_names:
+            # Fetch the image - name can be found based on the card's information
             card_info['name'] = card_name
-            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+            cname = card_name
+            if cname == 'con':
+                cname == 'con__'
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
                                                          card_info['collector_number'],
-                                                         fetch_data.get_valid_filename(card_info['name']))
+                                                         fetch_data.get_valid_filename(cname))
             card_img = cv2.imread(img_name)
+
+            # If the image doesn't exist, download it from the URL
             if card_img is None:
+                set_name = card_info['set']
+                if set_name == 'con':
+                    set_name = 'con__'
                 fetch_data.fetch_card_image(card_info,
-                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+                                            out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name))
                 card_img = cv2.imread(img_name)
             if card_img is None:
                 print('WARNING: card %s is not found!' % img_name)
+                continue
+            """
+            img_cc = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
+            img_thresh = cv2.adaptiveThreshold(img_cc, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 5)
+            # Dilute the image, then erode them to remove minor noises
+            kernel = np.ones((3, 3), np.uint8)
+            img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
+            img_erode = cv2.erode(img_dilate, kernel, iterations=1)
+            cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+            cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
+            cnts2 = cnts2[:10]
+            if True:
+                cv2.drawContours(img_cc, cnts2, -1, (0, 255, 0), 3)
+                #cv2.imshow('Contours', card_img)
+                #cv2.waitKey(10000)
+            """
+            set_img = card_img[595:635, 600:690]
+            #cv2.imshow(card_info['name'], set_img)
+            # Compute value of the card's perceptual hash, then store it to the database
             #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
-            #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
-            #card_pool.at[ind, 'art_hash'] = art_hash
             img_card = Image.fromarray(card_img)
-            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
-            #card_pool.at[ind, 'card_hash'] = card_hash
-            card_info['card_hash'] = card_hash
-            #print(new_pool.index.max())
+            img_set = Image.fromarray(set_img)
+            #cv2.imshow('Set' + card_names[0], set_img)
+            for hs in hash_size:
+                card_hash = ih.phash(img_card, hash_size=hs)
+                set_hash = ih.whash(img_set, hash_size=64)
+                card_info['card_hash_%d' % hs] = card_hash
+                card_info['set_hash_%d' % 64] = set_hash
+                #print('Setting set_hash_%d' % hs)
+                #art_hash = ih.phash(img_art, hash_size=hs)
+                #card_info['art_hash_%d' % hs] = art_hash
             new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
+    return new_pool
 
-    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
-                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
-                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
+def calc_image_hashes(card_pool, save_to=None, hash_size=None):
+    """
+    Calculate perceptual hash (pHash) value for each cards in the database, then store them if needed
+    :param card_pool: pandas dataframe containing all card information
+    :param save_to: path for the pickle file to be saved
+    :param hash_size: param for pHash algorithm
+    :return: pandas dataframe
+    """
+    if hash_size is None:
+        hash_size = [16, 32]
+    elif isinstance(hash_size, int):
+        hash_size = [hash_size]
+
+    num_cores = 16
+    num_partitions = round(card_pool.shape[0]/1000)
+    if num_partitions < min(num_cores, card_pool.shape[0]):
+        num_partitions = min(num_cores, card_pool.shape[0])
+    pool = Pool(num_cores)
+    df_split = np.array_split(card_pool, num_partitions)
+    new_pool = pd.concat(pool.map(do_calc, [(split, hash_size) for split in df_split]))
+    pool.close()
+    pool.join()
+    # Since some double-faced cards may result in two different cards, create a new dataframe to store the result
+
     if save_to is not None:
         new_pool.to_pickle(save_to)
     return new_pool
@@ -69,10 +132,12 @@
 
 # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
 def order_points(pts):
-    # initialzie a list of coordinates that will be ordered
-    # such that the first entry in the list is the top-left,
-    # the second entry is the top-right, the third is the
-    # bottom-right, and the fourth is the bottom-left
+    """
+    initialzie a list of coordinates that will be ordered such that the first entry in the list is the top-left,
+    the second entry is the top-right, the third is the bottom-right, and the fourth is the bottom-left
+    :param pts: array containing 4 points
+    :return: ordered list of 4 points
+    """
     rect = np.zeros((4, 2), dtype="float32")
 
     # the top-left point will have the smallest sum, whereas
@@ -92,8 +157,14 @@
     return rect
 
 
-# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
 def four_point_transform(image, pts):
+    """
+    Transform a quadrilateral section of an image into a rectangular area
+    From: www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
+    :param image: source image
+    :param pts: 4 corners of the quadrilateral
+    :return: rectangular image of the specified area
+    """
     # obtain a consistent order of the points and unpack them
     # individually
     rect = order_points(pts)
@@ -138,71 +209,14 @@
     return warped
 
 
-# Get the names of the output layers
-def get_outputs_names(net):
-    # Get the names of all the layers in the network
-    layers_names = net.getLayerNames()
-    # Get the names of the output layers, i.e. the layers with unconnected outputs
-    return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
-
-
-# Remove the bounding boxes with low confidence using non-maxima suppression
-# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
-def post_process(frame, outs, thresh_conf, thresh_nms):
-    frame_height = frame.shape[0]
-    frame_width = frame.shape[1]
-
-    # Scan through all the bounding boxes output from the network and keep only the
-    # ones with high confidence scores. Assign the box's class label as the class with the highest score.
-    class_ids = []
-    confidences = []
-    boxes = []
-    for out in outs:
-        for detection in out:
-            scores = detection[5:]
-            class_id = np.argmax(scores)
-            confidence = scores[class_id]
-            if confidence > thresh_conf:
-                center_x = int(detection[0] * frame_width)
-                center_y = int(detection[1] * frame_height)
-                width = int(detection[2] * frame_width)
-                height = int(detection[3] * frame_height)
-                left = int(center_x - width / 2)
-                top = int(center_y - height / 2)
-                class_ids.append(class_id)
-                confidences.append(float(confidence))
-                boxes.append([left, top, width, height])
-
-    # Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
-    indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
-    
-    ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
-    return ret
-
-
-# Draw the predicted bounding box
-def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
-    # Draw a bounding box.
-    cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
-
-    label = '%.2f' % conf
-
-    # Get the label for the class name and its confidence
-    if classes:
-        assert (class_id < len(classes))
-        label = '%s:%s' % (classes[class_id], label)
-
-    # Display the label at the top of the bounding box
-    label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
-    top = max(top, label_size[1])
-    cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
-
-
 def remove_glare(img):
     """
+    Reduce the effect of glaring in the image
     Inspired from:
     http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
     The idea is to find area that has low saturation but high value, which is what a glare usually look like.
+    :param img: source image
+    :return: corrected image with glaring smoothened out
     """
     img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
     _, s, v = cv2.split(img_hsv)
@@ -225,66 +239,148 @@
     return corrected
 
 
-def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.2):
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=10000, debug=False):
+    """
+    Find contours of all cards in the image
+    :param img: source image
+    :param thresh_c: value of the constant C for adaptive thresholding
+    :param kernel_size: dimension of the kernel used for dilation and erosion
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :return: list of candidate contours
+    """
     # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     img_blur = cv2.medianBlur(img_gray, 5)
-    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
-
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, thresh_c)
+    if debug:
+        cv2.imshow('Thres', img_thresh)
     # Dilute the image, then erode them to remove minor noises
     kernel = np.ones(kernel_size, np.uint8)
     img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
     img_erode = cv2.erode(img_dilate, kernel, iterations=1)
-
+    if debug:
+        cv2.imshow('Eroded', img_erode)
     # Find the contour
-    #img_contour = img_erode.copy()
-    _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
     if len(cnts) == 0:
         print('no contours')
         return []
-    #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
-    #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
-    #cv2.imshow('test', img_contour)
-
-    # For each contours detected, check if they are large enough and are rectangle
+    img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
+    img_cont_base = img_cont.copy()
+    cnts2 = sorted(cnts, key=cv2.contourArea, reverse=True)
+    cnts2 = cnts2[:10]
+    for i in range(0, len(cnts2)):
+        print(i, len(cnts2[i]))
+    if debug:
+        cv2.drawContours(img_cont, cnts2, -1, (0, 255, 0), 3)
+        cv2.imshow('Contours', img_cont)
+    # The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child
+    # their previous and next node
+    # Using recursive search, find the uppermost contour in the hierarchy that satisfies the condition
+    # The candidate contour must be rectangle (has 4 points) and should be larger than a threshold
     cnts_rect = []
-    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
-    for i in range(min(len(cnts), 5)):  # The card should be within top 5 largest contour
-        size = cv2.contourArea(cnts[ind_sort[i]])
-        peri = cv2.arcLength(cnts[ind_sort[i]], True)
-        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
-        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
-            cnts_rect.append(approx)
+    stack = [(0, hier[0][0])]
+    while len(stack) > 0:
+        i_cnt, h = stack.pop()
+        i_next, i_prev, i_child, i_parent = h
+        if i_next != -1:
+            stack.append((i_next, hier[0][i_next]))
+        cnt = cnts[i_cnt]
+        size = cv2.contourArea(cnt)
+        peri = cv2.arcLength(cnt, True)
+        approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
+        print('Base Size:', size)
+        print('Len Approx:', len(approx))
+        if size >= size_thresh and len(approx) == 4:
+            # lets see if we got a contour very close in size as child
+            if i_child != -1:
+                img_ccont = img_cont_base.copy()
+                # lets collect all children
+                c_list = [cnts[i_child]]
+                h_info = hier[0][i_child]
+                while h_info[0] != -1:
+                    cld = cnts[h_info[0]]
+                    c_list.append(cld)
+                    h_info = hier[0][h_info[0]]
+                # child with biggest area
+                c_list.sort(key=cv2.contourArea, reverse=True)
+                c_cnt = c_list[0]  # the biggest child
+                if debug:
+                    cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
+                    cv2.imshow('CCont', img_ccont)
+                c_size = cv2.contourArea(c_cnt)
+                c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
+                if len(c_approx) == 4 and (c_size/size) > 0.85:
+                    rect = cv2.minAreaRect(c_cnt)
+                    box = cv2.boxPoints(rect)
+                    box = np.intp(box)
+                    print(c_cnt)
+                    print(box)
 
+                    print('CSize:', c_size, '%:', c_size/size)
+                    b2 = []
+                    for x in box:
+                        b2.append([x])
+                    cnts_rect.append(np.array(b2))
+                else:
+                    print('CF:', (c_size/size))
+                    print('Size:', size)
+                    cnts_rect.append(approx)
+            else:
+                #print('CF:', (c_size/size))
+                print('Size:', size)
+                cnts_rect.append(approx)
+        else:
+            if i_child != -1:
+                stack.append((i_child, hier[0][i_child]))
     return cnts_rect
 
 
 def draw_card_graph(exist_cards, card_pool, f_len):
-    w_card = 63
+    """
+    Given the history of detected cards in the current and several previous frames, draw a simple graph
+    displaying the detected cards with its confidence level
+    :param exist_cards: History of all detected cards in the previous (f_len) frames
+    :param card_pool: pandas dataframe of all card's information
+    :param f_len: length of windows (in frames) to consider for confidence level
+    :return:
+    """
+    # Lots of constants to set the dimension of each elements
+    w_card = 63  # Width of the card image displayed
     h_card = 88
-    gap = 25
-    gap_sm = 10
-    w_bar = 300
+    gap = 25  # Offset between each elements
+    gap_sm = 10  # Small offset
+    w_bar = 300  # Length of the confidence bar at 100%
     h_bar = 12
     txt_scale = 0.8
-    n_cards_p_col = 4
-    w_img = gap + (w_card + gap + w_bar + gap) * 2
-    #h_img = gap + (h_card + gap) * n_cards_p_col
+    n_cards_p_col = 4  # Number of cards displayed per one column
+    w_img = gap + (w_card + gap + w_bar + gap) * 2  # Dimension of the entire graph (for 2 columns)
     h_img = 480
     img_graph = np.zeros((h_img, w_img, 3), dtype=np.uint8)
     x_anchor = gap
     y_anchor = gap
 
     i = 0
+
+    # Cards are displayed from the most confident to the least
+    # Confidence level is calculated by number of frames that the card was detected in
     for key, val in sorted(exist_cards.items(), key=itemgetter(1), reverse=True)[:n_cards_p_col * 2]:
         card_name = key[:key.find('(') - 1]
         card_set = key[key.find('(') + 1:key.find(')')]
         confidence = sum(val) / f_len
         card_info = card_pool[(card_pool['name'] == card_name) & (card_pool['set'] == card_set)].iloc[0]
-        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
-                                                     card_info['collector_number'],
-                                                     fetch_data.get_valid_filename(card_info['name']))
-        card_img = cv2.imread(img_name)
+        img_name = '%s/card_img/tiny/%s/%s_%s.png' % (Config.data_dir, card_info['set'],
+                                                      card_info['collector_number'],
+                                                      fetch_data.get_valid_filename(card_info['name']))
+        # If the card image is not found, just leave it blank
+        if os.path.exists(img_name):
+            card_img = cv2.imread(img_name)
+        else:
+            card_img = np.ones((h_card, w_card, 3)) * 255
+            cv2.putText(card_img, 'X', ((w_card - int(txt_scale * 25)) // 2, (h_card + int(txt_scale * 25)) // 2),
+                        cv2.FONT_HERSHEY_SIMPLEX, txt_scale, (0, 0, 0), 2)
+
+        # Insert the card image, card name, and confidence bar to the graph
         img_graph[y_anchor:y_anchor + h_card, x_anchor:x_anchor + w_card] = card_img
         cv2.putText(img_graph, '%s (%s)' % (card_name, card_set),
                     (x_anchor + w_card + gap, y_anchor + gap_sm + int(txt_scale * 25)), cv2.FONT_HERSHEY_SIMPLEX,
@@ -301,266 +397,346 @@
     return img_graph
 
 
-def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
-                 debug=False):
-    start_1 = time.time()
-    elapsed = []
-    '''
-    # Create a 4D blob from a frame.
-    blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
+def detect_frame(img, card_pool, hash_size=32, size_thresh=10000,
+                 out_path=None, display=True, debug=False):
+    """
+    Identify all cards in the input frame, display or save the frame if needed
+    :param img: input frame
+    :param card_pool: pandas dataframe of all card's information
+    :param hash_size: param for pHash algorithm
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :param out_path: path to save the result
+    :param display: flag for displaying the result
+    :param debug: flag for debug mode
+    :return: list of detected card's name/set and resulting image
+    """
 
-    # Sets the input to the network
-    net.setInput(blob)
-
-    # Runs the forward pass to get output of the output layers
-    outs = net.forward(get_outputs_names(net))
-    elapsed.append((time.time() - start_1) * 1000)
-
-    start_2 = time.time()
-    img_result = img.copy()
-
-    # Remove the bounding boxes with low confidence
-    obj_list = post_process(img, outs, thresh_conf, thresh_nms)
-    for obj in obj_list:
-        class_id, confidence, box = obj
-        left, top, width, height = box
-        draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
-    elapsed.append((time.time() - start_2) * 1000)
-    '''
-    img_result = img.copy()
-    obj_list = []
-    # Put efficiency information. The function getPerfProfile returns the
-    # overall time for inference(t) and the timings for each of the layers(in layersTimes)
-    #if display:
-    #    t, _ = net.getPerfProfile()
-    #    label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
-    #    cv2.putText(img_result, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
-
-    '''
-    Assuming that the model has properly identified all cards, there should be 1 card that can be classified per
-    bounding box. Find the largest rectangular contour from the region of interest, and identify the card by  
-    comparing the perceptual hashing of the image with the other cards' image from the database.
-    '''
+    img_result = img.copy()  # For displaying and saving
     det_cards = []
-    for i in range(len(obj_list)):
-        start_3 = time.time()
-        _, _, box = obj_list[i]
-        left, top, width, height = box
-        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
-        offset_ratio = 0.1
-        x1 = max(0, int(left - offset_ratio * width))
-        x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
-        y1 = max(0, int(top - offset_ratio * height))
-        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
-        img_snip = img[y1:y2, x1:x2]
-        cnts = find_card(img_snip)
-        elapsed.append((time.time() - start_3) * 1000)
-        if len(cnts) > 0:
-            start_4 = time.time()
-            cnt = cnts[0]  # The largest (rectangular) contour
-            pts = np.float32([p[0] for p in cnt])
-            img_warp = four_point_transform(img_snip, pts)
-            img_warp = cv2.resize(img_warp, (card_width, card_height))
-            elapsed.append((time.time() - start_4) * 1000)
-            '''
-            img_art = img_warp[47:249, 22:294]
-            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
-            art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
-            card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
-            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
-            card_name = min_cards.iloc[0]['name']
-            '''
-            start_5 = time.time()
-            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
-            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten()
-            card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
-            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
-            card_name = min_cards.iloc[0]['name']
-            card_set = min_cards.iloc[0]['set']
-            det_cards.append((card_name, card_set))
-            hash_diff = min_cards.iloc[0]['hash_diff']
-            elapsed.append((time.time() - start_5) * 1000)
+    # Detect contours of all cards in the image
+    cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
+    print('Countours:', len(cnts))
+    for i in range(len(cnts)):
+        print('Contour', i)
+        cnt = cnts[i]
+        # For the region of the image covered by the contour, transform them into a rectangular image
+        pts = np.float32([p[0] for p in cnt])
+        img_warp = four_point_transform(img, pts)
 
-            # Display the result
-            if debug:
-                # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
-                cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
-                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
-            cv2.putText(img_result, card_name, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
-            if debug:
-                cv2.imshow('card#%d' % i, img_warp)
-        elif debug:
-            cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
+        # To identify the card from the card image, perceptual hashing (pHash) algorithm is used
+        # Perceptual hash is a hash string built from features of the input medium. If two media are similar
+        # (ie. has similar features), their resulting pHash value will be very close.
+        # Using this property, the matching card for the given card image can be found by comparing pHash of
+        # all cards in the database, then finding the card that results in the minimal difference in pHash value.
+        '''
+        img_art = img_warp[47:249, 22:294]
+        img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
+        art_hash = ih.phash(img_art, hash_size=hash_size).hash.flatten()
+        card_pool['hash_diff'] = card_pool['art_hash'].apply(lambda x: np.count_nonzero(x != art_hash))
+        '''
+        img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+        img_card_size = img_warp.shape
+        print(img_card_size)
+        cut = [round(img_card_size[0]*0.57),round(img_card_size[0]*0.615),round(img_card_size[1]*0.81),round(img_card_size[1]*0.940)]
+        print(cut)
+        img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
+        print(img_set_part.shape)
+        img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
+        print('img set')
+        if debug:
+            cv2.imshow("Set Img#%d" % i, img_set_part)
+
+        # the stored values of hashes in the dataframe is pre-emptively flattened already to minimize computation time
+        card_hash = ih.phash(img_card, hash_size=hash_size).hash.flatten()
+        card_pool['hash_diff'] = card_pool['card_hash_%d' % hash_size]
+        card_pool['hash_diff'] = card_pool['hash_diff'].apply(lambda x: np.count_nonzero(x != card_hash))
+        min_card = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])].iloc[0]
+        hash_diff = min_card['hash_diff']
+
+        top_matches = sorted(card_pool['hash_diff'])
+        card_one = card_pool[card_pool['hash_diff'] == top_matches[0]].iloc[0]
+        card_two = card_pool[card_pool['hash_diff'] == top_matches[1]].iloc[0]
+
+        if card_one['name'] == card_two['name'] and card_one['set'] != card_two['set']:
+            set_img_hash = ih.whash(img_set, hash_size=hash_size).hash.flatten()
+            cd_data = pd.DataFrame(columns=list(card_pool.columns.values))
+            print(list(card_pool.columns.values))
+            candidates = []
+            for ix in range(0, 2):
+                cd = card_pool[card_pool['hash_diff'] == top_matches[ix]].iloc[0]
+                cd_data.loc[0 if cd_data.empty else cd_data.index.max()+1] = cd
+                print('Idx:', ix, 'Name:', cd['name'], 'Set:', cd['set'], 'Diff:', top_matches[ix])
+
+
+            cd_data['set_hash_diff'] = cd_data['set_hash_%d' % 64]
+            cd_data['set_hash_diff'] = cd_data['set_hash_diff'].apply(lambda x: np.count_nonzero(x != set_img_hash))
+            conf = sorted(cd_data['set_hash_diff'])
+            print('Confs:', conf)
+            best_match = cd_data[cd_data['set_hash_diff'] == min(cd_data['set_hash_diff'])].iloc[0]
+            print('Best Match', 'Name:', best_match['name'], 'Set:', best_match['set'])
+
+            min_card = best_match
+        card_name = min_card['name']
+        card_set = min_card['set']
+        det_cards.append((card_name, card_set))
+
+        # Render the result, and display them if needed
+        cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 2)
+        cv2.putText(img_result, card_name, (min(pts[0][0], pts[1][0]), min(pts[0][1], pts[1][1])),
+                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        if debug:
+            # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
+            cv2.putText(img_warp, card_name + ':' + card_set + ', ' + str(hash_diff), (0, 20),
+                        cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
+            cv2.imshow('card#%d' % i, img_warp)
+    if display:
+        cv2.imshow('Result', img_result)
+        inp = cv2.waitKey(0)
 
     if out_path is not None:
+        print(out_path)
         cv2.imwrite(out_path, img_result.astype(np.uint8))
-    elapsed = [(time.time() - start_1) * 1000] + elapsed
-    #print(', '.join(['%.2f' % t for t in elapsed]))
-    return obj_list, det_cards, img_result
+    return det_cards, img_result
 
 
-def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None,
-                 display=True, debug=False):
+def detect_video(capture, card_pool, hash_size=32, size_thresh=10000,
+                 out_path=None, display=True, show_graph=True, debug=False, crop_x=0, crop_y=0):
+    """
+    Identify all cards in the continuous video stream, display or save the result if needed
+    :param capture: input video stream
+    :param card_pool: pandas dataframe of all card's information
+    :param hash_size: param for pHash algorithm
+    :param size_thresh: threshold for size (in pixel) of the contour to be a candidate
+    :param out_path: path to save the result
+    :param display: flag for displaying the result
+    :param show_graph: flag to show graph
+    :param debug: flag for debug mode
+    :return: list of detected card's name/set and resulting image
+    :return:
+    """
+    # Get the dimension of the output video, and set it up
+    if show_graph:
+        img_graph = draw_card_graph({}, pd.DataFrame(), -1)  # Black image of the graph just to get the dimension
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) - 2*crop_x  + img_graph.shape[1]
+        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) - 2*crop_y, img_graph.shape[0])
+        height += 200  # some space to display last detected cards
+    else:
+        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
+        height = round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
     if out_path is not None:
-        img_graph = draw_card_graph({}, None, -1)  # Black image of the graph just to get the dimension
-        width = round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) + img_graph.shape[1]
-        height = max(round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)), img_graph.shape[0])
         vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'MJPG'), 10.0, (width, height))
     max_num_obj = 0
     f_len = 10  # number of frames to consider to check for existing cards
     exist_cards = {}
+
+    exist_card_single = {}
+    written_out_cards = set()
+    found_cards = []
     try:
         while True:
             ret, frame = capture.read()
+            croped_img = frame[crop_y:-crop_y, crop_x:-crop_x]
+            fimg = cv2.flip(croped_img, -1)
             start_time = time.time()
             if not ret:
                 # End of video
                 print("End of video. Press any key to exit")
                 cv2.waitKey(0)
                 break
-            # Use the YOLO model to identify each cards annonymously
-            start_yolo = time.time()
-            obj_list, det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
-                                                           thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
-                                                           display=display, debug=debug)
-            elapsed_yolo = (time.time() - start_yolo) * 1000
-            # If the card was already detected in the previous frame, append 1 to the list
-            # If the card previously detected was not found in this trame, append 0 to the list
-            # If the card wasn't previously detected, make a new list and add 1 to it
-            # If the same card is detected multiple times in the same frame, keep track of the duplicates
-            # The confidence will be calculated based on the number of frames the card was detected for
-            det_cards_count = collections.Counter(det_cards).items()
-            det_cards_list = []
-            for card, count in det_cards_count:
-                card_name, card_set = card
-                for i in range(count): 1
-                key = '%s (%s) #%d' % (card_name, card_set, i + 1)
-                det_cards_list.append(key)
-            gone = []
-            for key, val in exist_cards.items():
-                if key in det_cards_list:
-                    exist_cards[key] = exist_cards[key][1 - f_len:] + [1]
-                else:
-                    exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
-                if len(val) == f_len and sum(val) == 0:
-                    gone.append(key)
-            for key in det_cards_list:
-                if key not in exist_cards.keys():
-                    exist_cards[key] = [1]
-            for key in gone:
-                exist_cards.pop(key)
-            start_graph = time.time()
-            img_graph = draw_card_graph(exist_cards, card_pool, f_len)
-            elapsed_graph = (time.time() - start_graph) * 1000
-            if debug:
-                max_num_obj = max(max_num_obj, len(obj_list))
-                for i in range(len(obj_list), max_num_obj):
-                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
+            # Detect all cards from the current frame
+            det_cards, img_result = detect_frame(fimg, card_pool, hash_size=hash_size, size_thresh=size_thresh,
+                                                 out_path=None, display=False, debug=debug)
+            if show_graph:
+                # If the card was already detected in the previous frame, append 1 to the list
+                # If the card previously detected was not found in this trame, append 0 to the list
+                # If the card wasn't previously detected, make a new list and add 1 to it
+                # If the same card is detected multiple times in the same frame, keep track of the duplicates
+                # The confidence will be calculated based on the number of frames the card was detected for
+                det_cards_count = collections.Counter(det_cards).items()
+                det_cards_list = []
+                for card, count in det_cards_count:
+                    card_name, card_set = card
+                    for i in range(count): 1
+                    key = '%s (%s) #%d' % (card_name, card_set, i + 1)
+                    det_cards_list.append(key)
+                gone = []
+                for key, val in exist_cards.items():
+                    if key in det_cards_list:
+                        exist_cards[key] = exist_cards[key][1 - f_len:] + [1]
+                    else:
+                        exist_cards[key] = exist_cards[key][1 - f_len:] + [0]
+                    if len(val) == f_len and sum(val) == 0:
+                        gone.append(key)  # not there anymore
 
-            start_display = time.time()
-            img_save = np.zeros((height, width, 3), dtype=np.uint8)
-            img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
-            img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
+                det_card_map = {}
+                gone_single =  []
+                for card_name, card_set in det_cards:
+                    skey = '%s (%s)' % (card_name, card_set)
+                    det_card_map[skey] = (card_name, card_set)
+
+                for key, val in exist_card_single.items():
+                    if key in det_card_map:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [1]
+                    else:
+                        exist_card_single[key] = exist_card_single[key][1 - f_len:] + [0]
+
+                    if len(val) == f_len and sum(val) == 0:
+                        gone_single.append(key)
+                        if key in written_out_cards:
+                            written_out_cards.remove(key)
+                    if len(val) == f_len and sum(val) == f_len:
+                        if key not in written_out_cards and key in det_card_map:
+                            written_out_cards.add(key)
+                            found_cards.append(det_card_map[key])
+
+                for key in det_card_map:
+                    if key not in exist_card_single.keys():
+                        exist_card_single[key] = [1]
+                for key in gone_single:
+                    exist_card_single.pop(key)
+
+
+                for key in det_cards_list:
+                    if key not in exist_cards.keys():
+                        exist_cards[key] = [1]
+                for key in gone:
+                    exist_cards.pop(key)
+
+
+                # Draw the graph based on the history of detected cards, then concatenate it with the result image
+                img_graph = draw_card_graph(exist_cards, card_pool, f_len)
+                img_save = np.zeros((height, width, 3), dtype=np.uint8)
+                img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
+                img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
+                for c, card in enumerate(reversed(found_cards[-10:]), 1):
+                    cv2.putText(img_save, f'{card[0]} ({card[1].upper()})',(0, height-200+18*c), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
+            else:
+                img_save = img_result
+
+            # Display the result
             if display:
                 cv2.imshow('result', img_save)
-            elapsed_display = (time.time() - start_display) * 1000
+            if debug:
+                max_num_obj = max(max_num_obj, len(det_cards))
+                for i in range(len(det_cards), max_num_obj):
+                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
 
             elapsed_ms = (time.time() - start_time) * 1000
-            #print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display))
+            print('Elapsed time: %.2f ms' % elapsed_ms)
             if out_path is not None:
                 vid_writer.write(img_save.astype(np.uint8))
-            cv2.waitKey(1)
+            inp = cv2.waitKey(0)
+            if 'q' == chr(inp & 255):
+                break
     except KeyboardInterrupt:
         capture.release()
         if out_path is not None:
             vid_writer.release()
         cv2.destroyAllWindows()
 
+        with open('detect.txt', 'w') as of:
+            counter = collections.Counter(found_cards)
+            for key in counter:
+                of.write(f'{counter[key]} [{key[1].upper()}] {key[0]}\n')
 
-def main():
+
+
+def main(args):
     # Specify paths for all necessary files
-    test_path = os.path.abspath('test_file/test4.mp4')
-    #weight_path = 'backup/tiny_yolo_10_39500.weights'
-    #cfg_path = 'cfg/tiny_yolo_10.cfg'
-    #class_path = "data/obj_10.names"
-    weight_path = 'weights/second_general/tiny_yolo_final.weights'
-    cfg_path = 'cfg/tiny_yolo_old.cfg'
-    class_path = 'data/obj.names'
-    out_dir = 'out'
-    if not os.path.isfile(test_path):
-        print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(weight_path):
-        print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(cfg_path):
-        print('The config file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
-    if not os.path.isfile(class_path):
-        print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
-        return
+    hash_sizes = {16, 32}
+    hash_sizes.add(args.hash_size)
+    pck_path = os.path.abspath('card_pool.pck')
+    if os.path.isfile(pck_path):
+        card_pool = pd.read_pickle(pck_path)
+    else:
+        print('Warning: pickle for card database %s is not found!' % pck_path)
+        # Merge database for all cards, then calculate pHash values of each, store them
+        df_list = []
+        for set_name in Config.all_set_list:
+            if set_name == 'con':
+                set_name = 'con__'
+            csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name)
+            df = fetch_data.load_all_cards_text(csv_name)
+            df_list.append(df)
+        card_pool = pd.concat(df_list, sort=True)
+        card_pool.reset_index(drop=True, inplace=True)
+        card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=hash_sizes)
+    ch_key = 'card_hash_%d' % args.hash_size
+    set_key = 'set_hash_%d' % 64
+    if ch_key not in card_pool.columns:
+        # we did not generate this hash_size yet
+        print('We need to add hash_size=%d' % (args.hash_size,))
+        card_pool = calc_image_hashes(card_pool, save_to=pck_path, hash_size=[args.hash_size])
 
+    card_pool = card_pool[['name', 'set', 'collector_number', ch_key, set_key]]
 
-    '''
-    df_list = []
-    for set_name in fetch_data.all_set_list:
-        csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
-        df = fetch_data.load_all_cards_text(csv_name)
-        df_list.append(df)
-        #print(df)
-    card_pool = pd.concat(df_list, sort=True)
-    card_pool.reset_index(drop=True, inplace=True)
-    card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
-    for hash_size in [8, 16, 32, 64]:
-        for highfreq_factor in [4, 8, 16, 32]:
-            pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor)
-            if not os.path.exists(pck_name):
-                print(pck_name)
-                calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor)
-    '''
-    #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
-    #card_pool = fetch_data.load_all_cards_text(csv_name)
-    #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
-    #return
-    card_pool = pd.read_pickle('card_pool_32_4.pck')
-    #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
-    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
+    # Processing time is almost linear to the size of the database
+    # Program can be much faster if the search scope for the card can be reduced
+    card_pool = card_pool[card_pool['set'].isin(Config.set_2003_list)]
 
     # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
     # significantly increases speed for subtracting hashes in the future.
-    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
+    card_pool[ch_key] = card_pool[ch_key].apply(lambda x: x.hash.flatten())
+    card_pool[set_key] = card_pool[set_key].apply(lambda x: x.hash.flatten())
 
-    thresh_conf = 0.01
-    thresh_nms = 0.8
+    # If the test file isn't given, use webcam to capture video
+    if args.in_path is None:
+        capture = cv2.VideoCapture(0, cv2.CAP_V4L)
+        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
+        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
+        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
 
-    # Setup
-    # Read class names from text file
-    with open(class_path, 'r') as f:
-        classes = [line.strip() for line in f.readlines()]
-    # Load up the neural net using the config and weights
-    net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path)
-    net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
-    net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
-
-    # Save the detection result if out_dir is provided
-    if out_dir is None or out_dir == '':
-        out_path = None
-    else:
-        f_name = os.path.split(test_path)[1]
-        out_path = out_dir + '/' + f_name[:f_name.find('.')] + '.avi'
-    # Check if test file is image or video
-    test_ext = test_path[test_path.find('.') + 1:]
-
-    if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
-        img = cv2.imread(test_path)
-        detect_frame(net, classes, img, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
-    else:
-        capture = cv2.VideoCapture(0)
-        detect_video(net, classes, capture, card_pool, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms,
-                     display=True, debug=False)
+        thres = int(((1920-2*500)*(1080-2*200)*0.3))
+        print('Threshold:', thres)
+        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
+                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200, size_thresh=thres)
         capture.release()
+    else:
+        # Save the detection result if args.out_path is provided
+        if args.out_path is None:
+            out_path = None
+        else:
+            f_name = os.path.split(args.in_path)[1]
+            out_path = '%s/%s.avi' % (args.out_path, f_name[:f_name.find('.')])
+
+        if not os.path.isfile(args.in_path):
+            print('The test file %s doesn\'t exist!' % os.path.abspath(args.in_path))
+            return
+        # Check if test file is image or video
+        test_ext = args.in_path[args.in_path.find('.') + 1:]
+        if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
+            # Test file is an image
+            img = cv2.imread(args.in_path)
+            if img is None:
+                print('Could not read', args.in_path)
+            detect_frame(img, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         debug=args.debug)
+        else:
+            # Test file is a video
+            capture = cv2.VideoCapture(args.in_path)
+            detect_video(capture, card_pool, hash_size=args.hash_size, out_path=out_path, display=args.display,
+                         show_graph=args.show_graph, debug=args.debug)
+            capture.release()
     pass
 
 
 if __name__ == '__main__':
-    main()
+    parser = argparse.ArgumentParser()
+    parser.add_argument('-i', '--in', dest='in_path', help='Path of the input file. For webcam, leave it blank',
+                        type=str)
+    parser.add_argument('-o', '--out', dest='out_path', help='Path of the output directory to save the result',
+                        type=str)
+    parser.add_argument('-hs', '--hash_size', dest='hash_size',
+                        help='Size of the hash for pHash algorithm', type=int, default=16)
+    parser.add_argument('-dsp', '--display', dest='display', help='Display the result', action='store_true',
+                        default=False)
+    parser.add_argument('-dbg', '--debug', dest='debug', help='Enable debug mode', action='store_true', default=False)
+    parser.add_argument('-gph', '--show_graph', dest='show_graph', help='Display the graph for video output', 
+                        action='store_true', default=False)
+    args = parser.parse_args()
+    if not args.display and args.out_path is None:
+        # Then why the heck are you running this thing in the first place?
+        print('The program isn\'t displaying nor saving any output file. Please change the setting and try again.')
+        exit()
+    main(args)

--
Gitblit v1.10.0