From 13209df7bb53de19aa3f82e870db11eb5b7587f1 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 13 May 2016 18:59:43 +0000
Subject: [PATCH] art, cudnn

---
 src/parser.c | 1116 ++++++++++++++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 1,030 insertions(+), 86 deletions(-)

diff --git a/src/parser.c b/src/parser.c
index dc1db2b..d5288aa 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -4,10 +4,25 @@
 
 #include "parser.h"
 #include "activations.h"
+#include "crop_layer.h"
+#include "cost_layer.h"
 #include "convolutional_layer.h"
+#include "activation_layer.h"
+#include "normalization_layer.h"
+#include "batchnorm_layer.h"
+#include "deconvolutional_layer.h"
 #include "connected_layer.h"
+#include "rnn_layer.h"
+#include "gru_layer.h"
+#include "crnn_layer.h"
 #include "maxpool_layer.h"
 #include "softmax_layer.h"
+#include "dropout_layer.h"
+#include "detection_layer.h"
+#include "avgpool_layer.h"
+#include "local_layer.h"
+#include "route_layer.h"
+#include "shortcut_layer.h"
 #include "list.h"
 #include "option_list.h"
 #include "utils.h"
@@ -17,104 +32,666 @@
     list *options;
 }section;
 
+int is_network(section *s);
 int is_convolutional(section *s);
+int is_activation(section *s);
+int is_local(section *s);
+int is_deconvolutional(section *s);
 int is_connected(section *s);
+int is_rnn(section *s);
+int is_gru(section *s);
+int is_crnn(section *s);
 int is_maxpool(section *s);
+int is_avgpool(section *s);
+int is_dropout(section *s);
 int is_softmax(section *s);
+int is_normalization(section *s);
+int is_batchnorm(section *s);
+int is_crop(section *s);
+int is_shortcut(section *s);
+int is_cost(section *s);
+int is_detection(section *s);
+int is_route(section *s);
 list *read_cfg(char *filename);
 
+void free_section(section *s)
+{
+    free(s->type);
+    node *n = s->options->front;
+    while(n){
+        kvp *pair = (kvp *)n->val;
+        free(pair->key);
+        free(pair);
+        node *next = n->next;
+        free(n);
+        n = next;
+    }
+    free(s->options);
+    free(s);
+}
+
+void parse_data(char *data, float *a, int n)
+{
+    int i;
+    if(!data) return;
+    char *curr = data;
+    char *next = data;
+    int done = 0;
+    for(i = 0; i < n && !done; ++i){
+        while(*++next !='\0' && *next != ',');
+        if(*next == '\0') done = 1;
+        *next = '\0';
+        sscanf(curr, "%g", &a[i]);
+        curr = next+1;
+    }
+}
+
+typedef struct size_params{
+    int batch;
+    int inputs;
+    int h;
+    int w;
+    int c;
+    int index;
+    int time_steps;
+} size_params;
+
+deconvolutional_layer parse_deconvolutional(list *options, size_params params)
+{
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
+
+    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer.filters, c*n*size*size);
+    parse_data(biases, layer.biases, n);
+    #ifdef GPU
+    if(weights || biases) push_deconvolutional_layer(layer);
+    #endif
+    return layer;
+}
+
+local_layer parse_local(list *options, size_params params)
+{
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int(options, "pad",0);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before local layer must output image.");
+
+    local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
+
+    return layer;
+}
+
+convolutional_layer parse_convolutional(list *options, size_params params)
+{
+    int n = option_find_int(options, "filters",1);
+    int size = option_find_int(options, "size",1);
+    int stride = option_find_int(options, "stride",1);
+    int pad = option_find_int(options, "pad",0);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int binary = option_find_int_quiet(options, "binary", 0);
+    int xnor = option_find_int_quiet(options, "xnor", 0);
+
+    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor);
+    layer.flipped = option_find_int_quiet(options, "flipped", 0);
+    layer.dot = option_find_float_quiet(options, "dot", 0);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(weights, layer.filters, c*n*size*size);
+    parse_data(biases, layer.biases, n);
+    #ifdef GPU
+    if(weights || biases) push_convolutional_layer(layer);
+    #endif
+    return layer;
+}
+
+layer parse_crnn(list *options, size_params params)
+{
+    int output_filters = option_find_int(options, "output_filters",1);
+    int hidden_filters = option_find_int(options, "hidden_filters",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
+layer parse_rnn(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    int hidden = option_find_int(options, "hidden",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+    int logistic = option_find_int_quiet(options, "logistic", 0);
+
+    layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
+
+    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
+
+    return l;
+}
+
+layer parse_gru(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
+
+    return l;
+}
+
+connected_layer parse_connected(list *options, size_params params)
+{
+    int output = option_find_int(options, "output",1);
+    char *activation_s = option_find_str(options, "activation", "logistic");
+    ACTIVATION activation = get_activation(activation_s);
+    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
+
+    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
+
+    char *weights = option_find_str(options, "weights", 0);
+    char *biases = option_find_str(options, "biases", 0);
+    parse_data(biases, layer.biases, output);
+    parse_data(weights, layer.weights, params.inputs*output);
+    #ifdef GPU
+    if(weights || biases) push_connected_layer(layer);
+    #endif
+    return layer;
+}
+
+softmax_layer parse_softmax(list *options, size_params params)
+{
+    int groups = option_find_int_quiet(options, "groups",1);
+    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
+    layer.temperature = option_find_float_quiet(options, "temperature", 1);
+    return layer;
+}
+
+detection_layer parse_detection(list *options, size_params params)
+{
+    int coords = option_find_int(options, "coords", 1);
+    int classes = option_find_int(options, "classes", 1);
+    int rescore = option_find_int(options, "rescore", 0);
+    int num = option_find_int(options, "num", 1);
+    int side = option_find_int(options, "side", 7);
+    detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
+
+    layer.softmax = option_find_int(options, "softmax", 0);
+    layer.sqrt = option_find_int(options, "sqrt", 0);
+
+    layer.coord_scale = option_find_float(options, "coord_scale", 1);
+    layer.forced = option_find_int(options, "forced", 0);
+    layer.object_scale = option_find_float(options, "object_scale", 1);
+    layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
+    layer.class_scale = option_find_float(options, "class_scale", 1);
+    layer.jitter = option_find_float(options, "jitter", .2);
+    return layer;
+}
+
+cost_layer parse_cost(list *options, size_params params)
+{
+    char *type_s = option_find_str(options, "type", "sse");
+    COST_TYPE type = get_cost_type(type_s);
+    float scale = option_find_float_quiet(options, "scale",1);
+    cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
+    return layer;
+}
+
+crop_layer parse_crop(list *options, size_params params)
+{
+    int crop_height = option_find_int(options, "crop_height",1);
+    int crop_width = option_find_int(options, "crop_width",1);
+    int flip = option_find_int(options, "flip",0);
+    float angle = option_find_float(options, "angle",0);
+    float saturation = option_find_float(options, "saturation",1);
+    float exposure = option_find_float(options, "exposure",1);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before crop layer must output image.");
+
+    int noadjust = option_find_int_quiet(options, "noadjust",0);
+
+    crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
+    l.shift = option_find_float(options, "shift", 0);
+    l.noadjust = noadjust;
+    return l;
+}
+
+maxpool_layer parse_maxpool(list *options, size_params params)
+{
+    int stride = option_find_int(options, "stride",1);
+    int size = option_find_int(options, "size",stride);
+
+    int batch,h,w,c;
+    h = params.h;
+    w = params.w;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
+
+    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
+    return layer;
+}
+
+avgpool_layer parse_avgpool(list *options, size_params params)
+{
+    int batch,w,h,c;
+    w = params.w;
+    h = params.h;
+    c = params.c;
+    batch=params.batch;
+    if(!(h && w && c)) error("Layer before avgpool layer must output image.");
+
+    avgpool_layer layer = make_avgpool_layer(batch,w,h,c);
+    return layer;
+}
+
+dropout_layer parse_dropout(list *options, size_params params)
+{
+    float probability = option_find_float(options, "probability", .5);
+    dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
+    layer.out_w = params.w;
+    layer.out_h = params.h;
+    layer.out_c = params.c;
+    return layer;
+}
+
+layer parse_normalization(list *options, size_params params)
+{
+    float alpha = option_find_float(options, "alpha", .0001);
+    float beta =  option_find_float(options, "beta" , .75);
+    float kappa = option_find_float(options, "kappa", 1);
+    int size = option_find_int(options, "size", 5);
+    layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa);
+    return l;
+}
+
+layer parse_batchnorm(list *options, size_params params)
+{
+    layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c);
+    return l;
+}
+
+layer parse_shortcut(list *options, size_params params, network net)
+{
+    char *l = option_find(options, "from");   
+    int index = atoi(l);
+    if(index < 0) index = params.index + index;
+
+    int batch = params.batch;
+    layer from = net.layers[index];
+
+    layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);
+
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+    s.activation = activation;
+    return s;
+}
+
+
+layer parse_activation(list *options, size_params params)
+{
+    char *activation_s = option_find_str(options, "activation", "linear");
+    ACTIVATION activation = get_activation(activation_s);
+
+    layer l = make_activation_layer(params.batch, params.inputs, activation);
+
+    l.out_h = params.h;
+    l.out_w = params.w;
+    l.out_c = params.c;
+    l.h = params.h;
+    l.w = params.w;
+    l.c = params.c;
+
+    return l;
+}
+
+route_layer parse_route(list *options, size_params params, network net)
+{
+    char *l = option_find(options, "layers");   
+    int len = strlen(l);
+    if(!l) error("Route Layer must specify input layers");
+    int n = 1;
+    int i;
+    for(i = 0; i < len; ++i){
+        if (l[i] == ',') ++n;
+    }
+
+    int *layers = calloc(n, sizeof(int));
+    int *sizes = calloc(n, sizeof(int));
+    for(i = 0; i < n; ++i){
+        int index = atoi(l);
+        l = strchr(l, ',')+1;
+        if(index < 0) index = params.index + index;
+        layers[i] = index;
+        sizes[i] = net.layers[index].outputs;
+    }
+    int batch = params.batch;
+
+    route_layer layer = make_route_layer(batch, n, layers, sizes);
+
+    convolutional_layer first = net.layers[layers[0]];
+    layer.out_w = first.out_w;
+    layer.out_h = first.out_h;
+    layer.out_c = first.out_c;
+    for(i = 1; i < n; ++i){
+        int index = layers[i];
+        convolutional_layer next = net.layers[index];
+        if(next.out_w == first.out_w && next.out_h == first.out_h){
+            layer.out_c += next.out_c;
+        }else{
+            layer.out_h = layer.out_w = layer.out_c = 0;
+        }
+    }
+
+    return layer;
+}
+
+learning_rate_policy get_policy(char *s)
+{
+    if (strcmp(s, "random")==0) return RANDOM;
+    if (strcmp(s, "poly")==0) return POLY;
+    if (strcmp(s, "constant")==0) return CONSTANT;
+    if (strcmp(s, "step")==0) return STEP;
+    if (strcmp(s, "exp")==0) return EXP;
+    if (strcmp(s, "sigmoid")==0) return SIG;
+    if (strcmp(s, "steps")==0) return STEPS;
+    fprintf(stderr, "Couldn't find policy %s, going with constant\n", s);
+    return CONSTANT;
+}
+
+void parse_net_options(list *options, network *net)
+{
+    net->batch = option_find_int(options, "batch",1);
+    net->learning_rate = option_find_float(options, "learning_rate", .001);
+    net->momentum = option_find_float(options, "momentum", .9);
+    net->decay = option_find_float(options, "decay", .0001);
+    int subdivs = option_find_int(options, "subdivisions",1);
+    net->time_steps = option_find_int_quiet(options, "time_steps",1);
+    net->batch /= subdivs;
+    net->batch *= net->time_steps;
+    net->subdivisions = subdivs;
+
+    net->h = option_find_int_quiet(options, "height",0);
+    net->w = option_find_int_quiet(options, "width",0);
+    net->c = option_find_int_quiet(options, "channels",0);
+    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
+    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
+    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
+
+    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
+
+    char *policy_s = option_find_str(options, "policy", "constant");
+    net->policy = get_policy(policy_s);
+    if(net->policy == STEP){
+        net->step = option_find_int(options, "step", 1);
+        net->scale = option_find_float(options, "scale", 1);
+    } else if (net->policy == STEPS){
+        char *l = option_find(options, "steps");   
+        char *p = option_find(options, "scales");   
+        if(!l || !p) error("STEPS policy must have steps and scales in cfg file");
+
+        int len = strlen(l);
+        int n = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (l[i] == ',') ++n;
+        }
+        int *steps = calloc(n, sizeof(int));
+        float *scales = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            int step    = atoi(l);
+            float scale = atof(p);
+            l = strchr(l, ',')+1;
+            p = strchr(p, ',')+1;
+            steps[i] = step;
+            scales[i] = scale;
+        }
+        net->scales = scales;
+        net->steps = steps;
+        net->num_steps = n;
+    } else if (net->policy == EXP){
+        net->gamma = option_find_float(options, "gamma", 1);
+    } else if (net->policy == SIG){
+        net->gamma = option_find_float(options, "gamma", 1);
+        net->step = option_find_int(options, "step", 1);
+    } else if (net->policy == POLY || net->policy == RANDOM){
+        net->power = option_find_float(options, "power", 1);
+    }
+    net->max_batches = option_find_int(options, "max_batches", 0);
+}
 
 network parse_network_cfg(char *filename)
 {
     list *sections = read_cfg(filename);
-    network net = make_network(sections->size);
-
     node *n = sections->front;
+    if(!n) error("Config file has no sections");
+    network net = make_network(sections->size - 1);
+    size_params params;
+
+    section *s = (section *)n->val;
+    list *options = s->options;
+    if(!is_network(s)) error("First section must be [net] or [network]");
+    parse_net_options(options, &net);
+
+    params.h = net.h;
+    params.w = net.w;
+    params.c = net.c;
+    params.inputs = net.inputs;
+    params.batch = net.batch;
+    params.time_steps = net.time_steps;
+
+    size_t workspace_size = 0;
+    n = n->next;
     int count = 0;
+    free_section(s);
     while(n){
-        section *s = (section *)n->val;
-        list *options = s->options;
+        params.index = count;
+        fprintf(stderr, "%d: ", count);
+        s = (section *)n->val;
+        options = s->options;
+        layer l = {0};
         if(is_convolutional(s)){
-            int h,w,c;
-            int n = option_find_int(options, "filters",1);
-            int size = option_find_int(options, "size",1);
-            int stride = option_find_int(options, "stride",1);
-            char *activation_s = option_find_str(options, "activation", "sigmoid");
-            ACTIVATION activation = get_activation(activation_s);
-            if(count == 0){
-                h = option_find_int(options, "height",1);
-                w = option_find_int(options, "width",1);
-                c = option_find_int(options, "channels",1);
-            }else{
-                image m =  get_network_image_layer(net, count-1);
-                h = m.h;
-                w = m.w;
-                c = m.c;
-                if(h == 0) error("Layer before convolutional layer must output image.");
-            }
-            convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
-            net.types[count] = CONVOLUTIONAL;
-            net.layers[count] = layer;
-            option_unused(options);
-        }
-        else if(is_connected(s)){
-            int input;
-            int output = option_find_int(options, "output",1);
-            char *activation_s = option_find_str(options, "activation", "sigmoid");
-            ACTIVATION activation = get_activation(activation_s);
-            if(count == 0){
-                input = option_find_int(options, "input",1);
-            }else{
-                input =  get_network_output_size_layer(net, count-1);
-            }
-            connected_layer *layer = make_connected_layer(input, output, activation);
-            net.types[count] = CONNECTED;
-            net.layers[count] = layer;
-            option_unused(options);
+            l = parse_convolutional(options, params);
+        }else if(is_local(s)){
+            l = parse_local(options, params);
+        }else if(is_activation(s)){
+            l = parse_activation(options, params);
+        }else if(is_deconvolutional(s)){
+            l = parse_deconvolutional(options, params);
+        }else if(is_rnn(s)){
+            l = parse_rnn(options, params);
+        }else if(is_gru(s)){
+            l = parse_gru(options, params);
+        }else if(is_crnn(s)){
+            l = parse_crnn(options, params);
+        }else if(is_connected(s)){
+            l = parse_connected(options, params);
+        }else if(is_crop(s)){
+            l = parse_crop(options, params);
+        }else if(is_cost(s)){
+            l = parse_cost(options, params);
+        }else if(is_detection(s)){
+            l = parse_detection(options, params);
         }else if(is_softmax(s)){
-            int input;
-            if(count == 0){
-                input = option_find_int(options, "input",1);
-            }else{
-                input =  get_network_output_size_layer(net, count-1);
-            }
-            softmax_layer *layer = make_softmax_layer(input);
-            net.types[count] = SOFTMAX;
-            net.layers[count] = layer;
-            option_unused(options);
+            l = parse_softmax(options, params);
+        }else if(is_normalization(s)){
+            l = parse_normalization(options, params);
+        }else if(is_batchnorm(s)){
+            l = parse_batchnorm(options, params);
         }else if(is_maxpool(s)){
-            int h,w,c;
-            int stride = option_find_int(options, "stride",1);
-            //char *activation_s = option_find_str(options, "activation", "sigmoid");
-            if(count == 0){
-                h = option_find_int(options, "height",1);
-                w = option_find_int(options, "width",1);
-                c = option_find_int(options, "channels",1);
-            }else{
-                image m =  get_network_image_layer(net, count-1);
-                h = m.h;
-                w = m.w;
-                c = m.c;
-                if(h == 0) error("Layer before convolutional layer must output image.");
-            }
-            maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
-            net.types[count] = MAXPOOL;
-            net.layers[count] = layer;
-            option_unused(options);
+            l = parse_maxpool(options, params);
+        }else if(is_avgpool(s)){
+            l = parse_avgpool(options, params);
+        }else if(is_route(s)){
+            l = parse_route(options, params, net);
+        }else if(is_shortcut(s)){
+            l = parse_shortcut(options, params, net);
+        }else if(is_dropout(s)){
+            l = parse_dropout(options, params);
+            l.output = net.layers[count-1].output;
+            l.delta = net.layers[count-1].delta;
+#ifdef GPU
+            l.output_gpu = net.layers[count-1].output_gpu;
+            l.delta_gpu = net.layers[count-1].delta_gpu;
+#endif
         }else{
             fprintf(stderr, "Type not recognized: %s\n", s->type);
         }
-        ++count;
+        l.dontload = option_find_int_quiet(options, "dontload", 0);
+        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
+        option_unused(options);
+        net.layers[count] = l;
+        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
+        free_section(s);
         n = n->next;
+        ++count;
+        if(n){
+            params.h = l.out_h;
+            params.w = l.out_w;
+            params.c = l.out_c;
+            params.inputs = l.outputs;
+        }
     }   
+    free_list(sections);
+    net.outputs = get_network_output_size(net);
+    net.output = get_network_output(net);
+    if(workspace_size){
+#ifdef GPU
+        net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+#endif
+    }
     return net;
 }
 
+LAYER_TYPE string_to_layer_type(char * type)
+{
+
+    if (strcmp(type, "[shortcut]")==0) return SHORTCUT;
+    if (strcmp(type, "[crop]")==0) return CROP;
+    if (strcmp(type, "[cost]")==0) return COST;
+    if (strcmp(type, "[detection]")==0) return DETECTION;
+    if (strcmp(type, "[local]")==0) return LOCAL;
+    if (strcmp(type, "[deconv]")==0
+            || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL;
+    if (strcmp(type, "[conv]")==0
+            || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL;
+    if (strcmp(type, "[activation]")==0) return ACTIVE;
+    if (strcmp(type, "[net]")==0
+            || strcmp(type, "[network]")==0) return NETWORK;
+    if (strcmp(type, "[crnn]")==0) return CRNN;
+    if (strcmp(type, "[gru]")==0) return GRU;
+    if (strcmp(type, "[rnn]")==0) return RNN;
+    if (strcmp(type, "[conn]")==0
+            || strcmp(type, "[connected]")==0) return CONNECTED;
+    if (strcmp(type, "[max]")==0
+            || strcmp(type, "[maxpool]")==0) return MAXPOOL;
+    if (strcmp(type, "[avg]")==0
+            || strcmp(type, "[avgpool]")==0) return AVGPOOL;
+    if (strcmp(type, "[dropout]")==0) return DROPOUT;
+    if (strcmp(type, "[lrn]")==0
+            || strcmp(type, "[normalization]")==0) return NORMALIZATION;
+    if (strcmp(type, "[batchnorm]")==0) return BATCHNORM;
+    if (strcmp(type, "[soft]")==0
+            || strcmp(type, "[softmax]")==0) return SOFTMAX;
+    if (strcmp(type, "[route]")==0) return ROUTE;
+    return BLANK;
+}
+
+int is_shortcut(section *s)
+{
+    return (strcmp(s->type, "[shortcut]")==0);
+}
+int is_crop(section *s)
+{
+    return (strcmp(s->type, "[crop]")==0);
+}
+int is_cost(section *s)
+{
+    return (strcmp(s->type, "[cost]")==0);
+}
+int is_detection(section *s)
+{
+    return (strcmp(s->type, "[detection]")==0);
+}
+int is_local(section *s)
+{
+    return (strcmp(s->type, "[local]")==0);
+}
+int is_deconvolutional(section *s)
+{
+    return (strcmp(s->type, "[deconv]")==0
+            || strcmp(s->type, "[deconvolutional]")==0);
+}
 int is_convolutional(section *s)
 {
     return (strcmp(s->type, "[conv]")==0
             || strcmp(s->type, "[convolutional]")==0);
 }
+int is_activation(section *s)
+{
+    return (strcmp(s->type, "[activation]")==0);
+}
+int is_network(section *s)
+{
+    return (strcmp(s->type, "[net]")==0
+            || strcmp(s->type, "[network]")==0);
+}
+int is_crnn(section *s)
+{
+    return (strcmp(s->type, "[crnn]")==0);
+}
+int is_gru(section *s)
+{
+    return (strcmp(s->type, "[gru]")==0);
+}
+int is_rnn(section *s)
+{
+    return (strcmp(s->type, "[rnn]")==0);
+}
 int is_connected(section *s)
 {
     return (strcmp(s->type, "[conn]")==0
@@ -125,29 +702,35 @@
     return (strcmp(s->type, "[max]")==0
             || strcmp(s->type, "[maxpool]")==0);
 }
+int is_avgpool(section *s)
+{
+    return (strcmp(s->type, "[avg]")==0
+            || strcmp(s->type, "[avgpool]")==0);
+}
+int is_dropout(section *s)
+{
+    return (strcmp(s->type, "[dropout]")==0);
+}
+
+int is_normalization(section *s)
+{
+    return (strcmp(s->type, "[lrn]")==0
+            || strcmp(s->type, "[normalization]")==0);
+}
+
+int is_batchnorm(section *s)
+{
+    return (strcmp(s->type, "[batchnorm]")==0);
+}
 
 int is_softmax(section *s)
 {
     return (strcmp(s->type, "[soft]")==0
             || strcmp(s->type, "[softmax]")==0);
 }
-
-int read_option(char *s, list *options)
+int is_route(section *s)
 {
-    int i;
-    int len = strlen(s);
-    char *val = 0;
-    for(i = 0; i < len; ++i){
-        if(s[i] == '='){
-            s[i] = '\0';
-            val = s+i+1;
-            break;
-        }
-    }
-    if(i == len-1) return 0;
-    char *key = s;
-    option_insert(options, key, val);
-    return 1;
+    return (strcmp(s->type, "[route]")==0);
 }
 
 list *read_cfg(char *filename)
@@ -175,7 +758,7 @@
                 break;
             default:
                 if(!read_option(line, current->options)){
-                    printf("Config file error line %d, could parse: %s\n", nu, line);
+                    fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line);
                     free(line);
                 }
                 break;
@@ -185,3 +768,364 @@
     return sections;
 }
 
+void save_weights_double(network net, char *filename)
+{
+    fprintf(stderr, "Saving doubled weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(net.seen, sizeof(int), 1, fp);
+
+    int i,j,k;
+    for(i = 0; i < net.n; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(l);
+            }
+#endif
+            float zero = 0;
+            fwrite(l.biases, sizeof(float), l.n, fp);
+            fwrite(l.biases, sizeof(float), l.n, fp);
+
+            for (j = 0; j < l.n; ++j){
+                int index = j*l.c*l.size*l.size;
+                fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
+                for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
+            }
+            for (j = 0; j < l.n; ++j){
+                int index = j*l.c*l.size*l.size;
+                for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
+                fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
+            }
+        }
+    }
+    fclose(fp);
+}
+
+void save_convolutional_weights_binary(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
+    }
+#endif
+    binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    for(i = 0; i < l.n; ++i){
+        float mean = l.binary_filters[i*size];
+        if(mean < 0) mean = -mean;
+        fwrite(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
+            }
+            fwrite(&c, sizeof(char), 1, fp);
+        }
+    }
+}
+
+void save_convolutional_weights(layer l, FILE *fp)
+{
+    if(l.binary){
+        //save_convolutional_weights_binary(l, fp);
+        //return;
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_convolutional_layer(l);
+    }
+#endif
+    int num = l.n*l.c*l.size*l.size;
+    fwrite(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.n, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fwrite(l.filters, sizeof(float), num, fp);
+}
+
+void save_batchnorm_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_batchnorm_layer(l);
+    }
+#endif
+    fwrite(l.scales, sizeof(float), l.c, fp);
+    fwrite(l.rolling_mean, sizeof(float), l.c, fp);
+    fwrite(l.rolling_variance, sizeof(float), l.c, fp);
+}
+
+void save_connected_weights(layer l, FILE *fp)
+{
+#ifdef GPU
+    if(gpu_index >= 0){
+        pull_connected_layer(l);
+    }
+#endif
+    fwrite(l.biases, sizeof(float), l.outputs, fp);
+    fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if (l.batch_normalize){
+        fwrite(l.scales, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
+    }
+}
+
+void save_weights_upto(network net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    int major = 0;
+    int minor = 1;
+    int revision = 0;
+    fwrite(&major, sizeof(int), 1, fp);
+    fwrite(&minor, sizeof(int), 1, fp);
+    fwrite(&revision, sizeof(int), 1, fp);
+    fwrite(net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n && i < cutoff; ++i){
+        layer l = net.layers[i];
+        if(l.type == CONVOLUTIONAL){
+            save_convolutional_weights(l, fp);
+        } if(l.type == CONNECTED){
+            save_connected_weights(l, fp);
+        } if(l.type == BATCHNORM){
+            save_batchnorm_weights(l, fp);
+        } if(l.type == RNN){
+            save_connected_weights(*(l.input_layer), fp);
+            save_connected_weights(*(l.self_layer), fp);
+            save_connected_weights(*(l.output_layer), fp);
+        } if(l.type == GRU){
+            save_connected_weights(*(l.input_z_layer), fp);
+            save_connected_weights(*(l.input_r_layer), fp);
+            save_connected_weights(*(l.input_h_layer), fp);
+            save_connected_weights(*(l.state_z_layer), fp);
+            save_connected_weights(*(l.state_r_layer), fp);
+            save_connected_weights(*(l.state_h_layer), fp);
+        } if(l.type == CRNN){
+            save_convolutional_weights(*(l.input_layer), fp);
+            save_convolutional_weights(*(l.self_layer), fp);
+            save_convolutional_weights(*(l.output_layer), fp);
+        } if(l.type == LOCAL){
+#ifdef GPU
+            if(gpu_index >= 0){
+                pull_local_layer(l);
+            }
+#endif
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fwrite(l.biases, sizeof(float), l.outputs, fp);
+            fwrite(l.filters, sizeof(float), size, fp);
+        }
+    }
+    fclose(fp);
+}
+void save_weights(network net, char *filename)
+{
+    save_weights_upto(net, filename, net.n);
+}
+
+void transpose_matrix(float *a, int rows, int cols)
+{
+    float *transpose = calloc(rows*cols, sizeof(float));
+    int x, y;
+    for(x = 0; x < rows; ++x){
+        for(y = 0; y < cols; ++y){
+            transpose[y*rows + x] = a[x*cols + y];
+        }
+    }
+    memcpy(a, transpose, rows*cols*sizeof(float));
+    free(transpose);
+}
+
+void load_connected_weights(layer l, FILE *fp, int transpose)
+{
+    fread(l.biases, sizeof(float), l.outputs, fp);
+    fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
+    if(transpose){
+        transpose_matrix(l.weights, l.inputs, l.outputs);
+    }
+    //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs));
+    //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs));
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.outputs, fp);
+        fread(l.rolling_mean, sizeof(float), l.outputs, fp);
+        fread(l.rolling_variance, sizeof(float), l.outputs, fp);
+        //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs));
+        //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs));
+        //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs));
+    }
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_connected_layer(l);
+    }
+#endif
+}
+
+void load_batchnorm_weights(layer l, FILE *fp)
+{
+    fread(l.scales, sizeof(float), l.c, fp);
+    fread(l.rolling_mean, sizeof(float), l.c, fp);
+    fread(l.rolling_variance, sizeof(float), l.c, fp);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_batchnorm_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights_binary(layer l, FILE *fp)
+{
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    int size = l.c*l.size*l.size;
+    int i, j, k;
+    for(i = 0; i < l.n; ++i){
+        float mean = 0;
+        fread(&mean, sizeof(float), 1, fp);
+        for(j = 0; j < size/8; ++j){
+            int index = i*size + j*8;
+            unsigned char c = 0;
+            fread(&c, sizeof(char), 1, fp);
+            for(k = 0; k < 8; ++k){
+                if (j*8 + k >= size) break;
+                l.filters[index + k] = (c & 1<<k) ? mean : -mean;
+            }
+        }
+    }
+    binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+void load_convolutional_weights(layer l, FILE *fp)
+{
+    if(l.binary){
+        //load_convolutional_weights_binary(l, fp);
+        //return;
+    }
+    int num = l.n*l.c*l.size*l.size;
+    fread(l.biases, sizeof(float), l.n, fp);
+    if (l.batch_normalize && (!l.dontloadscales)){
+        fread(l.scales, sizeof(float), l.n, fp);
+        fread(l.rolling_mean, sizeof(float), l.n, fp);
+        fread(l.rolling_variance, sizeof(float), l.n, fp);
+    }
+    fread(l.filters, sizeof(float), num, fp);
+    if (l.flipped) {
+        transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
+    }
+    if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
+#ifdef GPU
+    if(gpu_index >= 0){
+        push_convolutional_layer(l);
+    }
+#endif
+}
+
+
+void load_weights_upto(network *net, char *filename, int cutoff)
+{
+    fprintf(stderr, "Loading weights from %s...", filename);
+    fflush(stdout);
+    FILE *fp = fopen(filename, "rb");
+    if(!fp) file_error(filename);
+
+    int major;
+    int minor;
+    int revision;
+    fread(&major, sizeof(int), 1, fp);
+    fread(&minor, sizeof(int), 1, fp);
+    fread(&revision, sizeof(int), 1, fp);
+    fread(net->seen, sizeof(int), 1, fp);
+    int transpose = (major > 1000) || (minor > 1000);
+
+    int i;
+    for(i = 0; i < net->n && i < cutoff; ++i){
+        layer l = net->layers[i];
+        if (l.dontload) continue;
+        if(l.type == CONVOLUTIONAL){
+            load_convolutional_weights(l, fp);
+        }
+        if(l.type == DECONVOLUTIONAL){
+            int num = l.n*l.c*l.size*l.size;
+            fread(l.biases, sizeof(float), l.n, fp);
+            fread(l.filters, sizeof(float), num, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_deconvolutional_layer(l);
+            }
+#endif
+        }
+        if(l.type == CONNECTED){
+            load_connected_weights(l, fp, transpose);
+        }
+        if(l.type == BATCHNORM){
+            load_batchnorm_weights(l, fp);
+        }
+        if(l.type == CRNN){
+            load_convolutional_weights(*(l.input_layer), fp);
+            load_convolutional_weights(*(l.self_layer), fp);
+            load_convolutional_weights(*(l.output_layer), fp);
+        }
+        if(l.type == RNN){
+            load_connected_weights(*(l.input_layer), fp, transpose);
+            load_connected_weights(*(l.self_layer), fp, transpose);
+            load_connected_weights(*(l.output_layer), fp, transpose);
+        }
+        if(l.type == GRU){
+            load_connected_weights(*(l.input_z_layer), fp, transpose);
+            load_connected_weights(*(l.input_r_layer), fp, transpose);
+            load_connected_weights(*(l.input_h_layer), fp, transpose);
+            load_connected_weights(*(l.state_z_layer), fp, transpose);
+            load_connected_weights(*(l.state_r_layer), fp, transpose);
+            load_connected_weights(*(l.state_h_layer), fp, transpose);
+        }
+        if(l.type == LOCAL){
+            int locations = l.out_w*l.out_h;
+            int size = l.size*l.size*l.c*l.n*locations;
+            fread(l.biases, sizeof(float), l.outputs, fp);
+            fread(l.filters, sizeof(float), size, fp);
+#ifdef GPU
+            if(gpu_index >= 0){
+                push_local_layer(l);
+            }
+#endif
+        }
+    }
+    fprintf(stderr, "Done!\n");
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    load_weights_upto(net, filename, net->n);
+}
+

--
Gitblit v1.10.0