From 158bb1bee9951875dbe3474d84c6663431e18301 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Tue, 21 Oct 2014 21:49:18 +0000
Subject: [PATCH] softmax on gpu

---
 src/network.c             |   71 +++++--
 src/maxpool_layer.h       |   13 +
 src/mini_blas.c           |    2 
 src/softmax_layer.h       |   13 +
 src/utils.h               |    2 
 Makefile                  |    2 
 src/connected_layer.c     |    7 
 src/gemm.c                |   52 ++++-
 src/softmax_layer.c       |  103 +++++++----
 src/cnn.c                 |   17 +
 src/maxpool_layer.cl      |   73 ++++++++
 src/convolutional_layer.c |   33 +++
 src/opencl.h              |    5 
 src/opencl.c              |   29 +++
 src/softmax_layer.cl      |   21 ++
 src/maxpool_layer.c       |   89 +++++++++
 src/utils.c               |    5 
 17 files changed, 440 insertions(+), 97 deletions(-)

diff --git a/Makefile b/Makefile
index 315e626..b5ad1eb 100644
--- a/Makefile
+++ b/Makefile
@@ -1,5 +1,5 @@
 CC=gcc
-GPU=0
+GPU=1
 COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
 ifeq ($(GPU), 1) 
 COMMON+=-DGPU
diff --git a/src/cnn.c b/src/cnn.c
index bfba26a..7e90a80 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -281,15 +281,17 @@
 void train_assira()
 {
 	network net = parse_network_cfg("cfg/assira.cfg");
+    int imgs = 1000/net.batch+1;
+    //imgs = 1;
 	srand(2222222);
 	int i = 0;
 	char *labels[] = {"cat","dog"};
 	while(1){
 		i += 1000;
-		data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256);
+		data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
 		normalize_data_rows(train);
 		clock_t start = clock(), end;
-		float loss = train_network_sgd_gpu(net, train, 10);
+		float loss = train_network_sgd_gpu(net, train, imgs);
 		end = clock();
 		printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC );
 		free_data(train);
@@ -358,7 +360,7 @@
     data train = load_all_cifar10();
     while(++count <= 10000){
         clock_t start = clock(), end;
-        float loss = train_network_sgd_gpu(net, train, iters);
+        float loss = train_network_sgd(net, train, iters);
         end = clock();
         //visualize_network(net);
         //cvWaitKey(5000);
@@ -369,7 +371,7 @@
             float test_acc = network_accuracy(net, test);
             printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
             char buff[256];
-            sprintf(buff, "/home/pjreddie/cifar/cifar2_%d.cfg", count);
+            sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
             save_network(net, buff);
         }else{
             printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
@@ -435,7 +437,7 @@
     int iters = 10000/net.batch;
     while(++count <= 2000){
         clock_t start = clock(), end;
-        float loss = train_network_sgd(net, train, iters);
+        float loss = train_network_sgd_gpu(net, train, iters);
         end = clock();
         float test_acc = network_accuracy(net, test);
         //float test_acc = 0;
@@ -893,7 +895,8 @@
 
 int main(int argc, char *argv[])
 {
-    //train_assira();
+    //test_blas();
+    train_assira();
     //test_distribution();
     //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
 
@@ -907,7 +910,7 @@
     //test_ensemble();
     //test_nist_single();
     //test_nist();
-    train_nist();
+    //train_nist();
     //test_convolutional_layer();
     //test_col2im();
     //test_cifar10();
diff --git a/src/connected_layer.c b/src/connected_layer.c
index ba83dc3..b41ae91 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -108,6 +108,12 @@
 
 #ifdef GPU
 
+void pull_connected_layer(connected_layer layer)
+{
+    cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
+    cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
+}
+
 void update_connected_layer_gpu(connected_layer layer)
 {
     axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
@@ -116,6 +122,7 @@
     scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
     axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
     scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
+    pull_connected_layer(layer);
 }
 
 void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 00de153..0ed5a99 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -2,6 +2,7 @@
 #include "utils.h"
 #include "mini_blas.h"
 #include <stdio.h>
+#include <time.h>
 
 int convolutional_out_height(convolutional_layer layer)
 {
@@ -341,6 +342,8 @@
     check_error(cl);
 }
 
+//#define TIMEIT
+
 void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
 {
     int i;
@@ -349,10 +352,21 @@
     int n = convolutional_out_height(layer)*
         convolutional_out_width(layer);
 
-    //cl_write_array(layer.filters_cl, layer.filters, m*k);
-    //cl_write_array(layer.biases_cl, layer.biases, m);
     bias_output_gpu(layer);
+
+    #ifdef TIMEIT
+    clock_t time = clock();
+    printf("Forward\n");
+    #endif
+
     im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Im2col %f\n", sec(clock()-time));
+    time = clock();
+    #endif
+
     for(i = 0; i < layer.batch; ++i){
         cl_mem a = layer.filters_cl;
         cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
@@ -361,8 +375,14 @@
         clReleaseMemObject(b);
         clReleaseMemObject(c);
     }
+    #ifdef TIMEIT
+    clFinish(cl.queue);
+    printf("Gemm %f\n", sec(clock()-time));
+    #endif
     activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-    //cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
+    #ifdef TIMEIT
+    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
+    #endif
 }
 
 void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
@@ -408,6 +428,12 @@
     }
 }
 
+void pull_convolutional_layer(convolutional_layer layer)
+{
+    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.biases_cl, layer.biases, layer.n);
+}
+
 void update_convolutional_layer_gpu(convolutional_layer layer)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
@@ -417,6 +443,7 @@
     scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
     axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
     scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
+    pull_convolutional_layer(layer);
 }
 
 
diff --git a/src/gemm.c b/src/gemm.c
index 65542bc..fa78daf 100644
--- a/src/gemm.c
+++ b/src/gemm.c
@@ -1,4 +1,5 @@
 #include "mini_blas.h"
+#include <clBLAS.h>
 
 void gemm(int TA, int TB, int M, int N, int K, float ALPHA, 
         float *A, int lda, 
@@ -35,7 +36,7 @@
         for(j = 0; j < N; ++j){
             register float sum = 0;
             for(k = 0; k < K; ++k){
-                sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
+                sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
             }
             C[i*ldc+j] += sum;
         }
@@ -57,6 +58,7 @@
         }
     }
 }
+
 void gemm_tt(int M, int N, int K, float ALPHA, 
         float *A, int lda, 
         float *B, int ldb,
@@ -65,9 +67,11 @@
     int i,j,k;
     for(i = 0; i < M; ++i){
         for(j = 0; j < N; ++j){
+            register float sum = 0;
             for(k = 0; k < K; ++k){
-                C[i*ldc+j] += ALPHA*A[i+k*lda]*B[k+j*ldb];
+                sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
             }
+            C[i*ldc+j] += sum;
         }
     }
 }
@@ -121,13 +125,31 @@
     return gemm_kernel;
 }
 
+void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, 
+        cl_mem A_gpu, int lda, 
+        cl_mem B_gpu, int ldb,
+        float BETA,
+        cl_mem C_gpu, int ldc);
+
 void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, 
         cl_mem A_gpu, int lda, 
         cl_mem B_gpu, int ldb,
         float BETA,
         cl_mem C_gpu, int ldc)
 {
-    //printf("gpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
+    cl_setup();
+    //cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
+    //check_error(cl);
+    gemm_ongpu_old(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
+}
+
+void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, 
+        cl_mem A_gpu, int lda, 
+        cl_mem B_gpu, int ldb,
+        float BETA,
+        cl_mem C_gpu, int ldc)
+{
+    //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
     cl_setup();
     cl_kernel gemm_kernel = get_gemm_kernel();
     cl_command_queue queue = cl.queue;
@@ -213,11 +235,11 @@
     float *c = random_matrix(m,n);
     int i;
     clock_t start = clock(), end;
-    for(i = 0; i<1000; ++i){
+    for(i = 0; i<10; ++i){
         gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
     }
     end = clock();
-    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
+    printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
     free(a);
     free(b);
     free(c);
@@ -270,19 +292,19 @@
     test_gpu_accuracy(0,1,1000,10,100); 
     test_gpu_accuracy(1,1,1000,10,100); 
 
-/*
-    time_gpu_random_matrix(0,0,1000,1000,100); 
-    time_random_matrix(0,0,1000,1000,100); 
+    /*
+       time_gpu_random_matrix(0,0,1000,1000,100); 
+       time_random_matrix(0,0,1000,1000,100); 
 
-    time_gpu_random_matrix(0,1,1000,1000,100); 
-    time_random_matrix(0,1,1000,1000,100); 
+       time_gpu_random_matrix(0,1,1000,1000,100); 
+       time_random_matrix(0,1,1000,1000,100); 
 
-    time_gpu_random_matrix(1,0,1000,1000,100); 
-    time_random_matrix(1,0,1000,1000,100); 
+       time_gpu_random_matrix(1,0,1000,1000,100); 
+       time_random_matrix(1,0,1000,1000,100); 
 
-    time_gpu_random_matrix(1,1,1000,1000,100); 
-    time_random_matrix(1,1,1000,1000,100); 
-    */
+       time_gpu_random_matrix(1,1,1000,1000,100); 
+       time_random_matrix(1,1,1000,1000,100); 
+     */
 
 }
 #endif
diff --git a/src/maxpool_layer.c b/src/maxpool_layer.c
index 01eed45..6531541 100644
--- a/src/maxpool_layer.c
+++ b/src/maxpool_layer.c
@@ -27,9 +27,15 @@
     layer->c = c;
     layer->size = size;
     layer->stride = stride;
-    layer->indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int));
-    layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
-    layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
+    int output_size = ((h-1)/stride+1) * ((w-1)/stride+1) * c * batch;
+    layer->indexes = calloc(output_size, sizeof(int));
+    layer->output =  calloc(output_size, sizeof(float));
+    layer->delta =   calloc(output_size, sizeof(float));
+    #ifdef GPU
+    layer->indexes_cl = cl_make_int_array(layer->indexes, output_size);
+    layer->output_cl  = cl_make_array(layer->output, output_size);
+    layer->delta_cl   = cl_make_array(layer->delta, output_size);
+    #endif
     return layer;
 }
 
@@ -66,7 +72,7 @@
                             int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
                             int valid = (cur_h >= 0 && cur_h < layer.h &&
                                          cur_w >= 0 && cur_w < layer.w);
-                            float val = (valid != 0) ? input[index] : -INFINITY;
+                            float val = (valid != 0) ? input[index] : -FLT_MAX;
                             max_i = (val > max) ? index : max_i;
                             max   = (val > max) ? val   : max;
                         }
@@ -79,7 +85,7 @@
     }
 }
 
-void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta)
+void backward_maxpool_layer(const maxpool_layer layer, float *delta)
 {
     int i;
     int h = (layer.h-1)/layer.stride + 1;
@@ -92,3 +98,76 @@
     }
 }
 
+#ifdef GPU
+cl_kernel get_forward_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/maxpool_layer.cl", "forward", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input)
+{
+    int h = (layer.h-1)/layer.stride + 1;
+    int w = (layer.w-1)/layer.stride + 1;
+    int c = layer.c;
+    cl_setup();
+    cl_kernel kernel = get_forward_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {h*w*c*layer.batch};
+
+    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+cl_kernel get_backward_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/maxpool_layer.cl", "backward", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta)
+{
+    cl_setup();
+    cl_kernel kernel = get_backward_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.h*layer.w*layer.c*layer.batch};
+
+    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+#endif
diff --git a/src/maxpool_layer.cl b/src/maxpool_layer.cl
new file mode 100644
index 0000000..fc793d0
--- /dev/null
+++ b/src/maxpool_layer.cl
@@ -0,0 +1,73 @@
+
+__kernel void forward(int in_h, int in_w, int in_c, int stride, int size, __global float *input, __global float *output, __global int *indexes)
+{
+    int h = (in_h-1)/stride + 1;
+    int w = (in_w-1)/stride + 1;
+    int c = in_c;
+
+    int id = get_global_id(0);
+    int j = id % w;
+    id /= w;
+    int i = id % h;
+    id /= h;
+    int k = id % c;
+    id /= c;
+    int b = id;
+
+    int w_offset = (-size-1)/2 + 1;
+    int h_offset = (-size-1)/2 + 1;
+
+    int out_index = j + w*(i + h*(k + c*b));
+    float max = -INFINITY;
+    int max_i = -1;
+    int l, m;
+    for(l = 0; l < size; ++l){
+        for(m = 0; m < size; ++m){
+            int cur_h = h_offset + i*stride + l;
+            int cur_w = w_offset + j*stride + m;
+            int index = cur_w + in_w*(cur_h + in_h*(k + b*in_c));
+            int valid = (cur_h >= 0 && cur_h < in_h &&
+                    cur_w >= 0 && cur_w < in_w);
+            float val = (valid != 0) ? input[index] : -INFINITY;
+            max_i = (val > max) ? index : max_i;
+            max   = (val > max) ? val   : max;
+        }
+    }
+    output[out_index] = max;
+    indexes[out_index] = max_i;
+}
+
+__kernel void backward(int in_h, int in_w, int in_c, int stride, int size, __global float *delta, __global float *prev_delta, __global int *indexes)
+{
+    int h = (in_h-1)/stride + 1;
+    int w = (in_w-1)/stride + 1;
+    int c = in_c;
+    int area = (size-1)/stride;
+
+    int id = get_global_id(0);
+    int index = id;
+    int j = id % in_w;
+    id /= in_w;
+    int i = id % in_h;
+    id /= in_h;
+    int k = id % in_c;
+    id /= in_c;
+    int b = id;
+
+    int w_offset = (-size-1)/2 + 1;
+    int h_offset = (-size-1)/2 + 1;
+
+    float d = 0;
+    int l, m;
+    for(l = -area; l < area+1; ++l){
+        for(m = -area; m < area+1; ++m){
+            int out_w = (j-w_offset)/stride + m;
+            int out_h = (i-h_offset)/stride + l;
+            int out_index = out_w + w*(out_h + h*(k + c*b));
+            int valid = (out_w >= 0 && out_w < w &&
+                     out_h >= 0 && out_h < h);
+            d += (valid && indexes[out_index] == index) ? delta[out_index] : 0;
+        }
+    }
+    prev_delta[index] = d;
+}
diff --git a/src/maxpool_layer.h b/src/maxpool_layer.h
index 9edb214..dc45c55 100644
--- a/src/maxpool_layer.h
+++ b/src/maxpool_layer.h
@@ -2,6 +2,7 @@
 #define MAXPOOL_LAYER_H
 
 #include "image.h"
+#include "opencl.h"
 
 typedef struct {
     int batch;
@@ -11,13 +12,23 @@
     int *indexes;
     float *delta;
     float *output;
+    #ifdef GPU
+    cl_mem indexes_cl;
+    cl_mem output_cl;
+    cl_mem delta_cl;
+    #endif
 } maxpool_layer;
 
 image get_maxpool_image(maxpool_layer layer);
 maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
 void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
 void forward_maxpool_layer(const maxpool_layer layer, float *input);
-void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta);
+void backward_maxpool_layer(const maxpool_layer layer, float *delta);
+
+#ifdef GPU
+void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input);
+void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta);
+#endif
 
 #endif
 
diff --git a/src/mini_blas.c b/src/mini_blas.c
index 0227b37..4d92971 100644
--- a/src/mini_blas.c
+++ b/src/mini_blas.c
@@ -41,7 +41,7 @@
     float *c = random_matrix(m,n);
     int i;
     clock_t start = clock(), end;
-    for(i = 0; i<1000; ++i){
+    for(i = 0; i<10; ++i){
         gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
     }
     end = clock();
diff --git a/src/network.c b/src/network.c
index f9b4667..6696769 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,4 +1,5 @@
 #include <stdio.h>
+#include <time.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -31,8 +32,10 @@
 }
 
 #ifdef GPU
+
 void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
 {
+    //printf("start\n");
     int i;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
@@ -49,28 +52,28 @@
             forward_connected_layer_gpu(layer, input);
             input = layer.output_cl;
         }
-        /*
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer(layer, input);
-            input = layer.output;
-        }
-        else if(net.types[i] == CROP){
-            crop_layer layer = *(crop_layer *)net.layers[i];
-            forward_crop_layer(layer, input);
-            input = layer.output;
-        }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer(layer, input);
-            input = layer.output;
+            forward_maxpool_layer_gpu(layer, input);
+            input = layer.output_cl;
         }
-        else if(net.types[i] == NORMALIZATION){
-            normalization_layer layer = *(normalization_layer *)net.layers[i];
-            forward_normalization_layer(layer, input);
-            input = layer.output;
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            forward_softmax_layer_gpu(layer, input);
+            input = layer.output_cl;
         }
-        */
+        /*
+           else if(net.types[i] == CROP){
+           crop_layer layer = *(crop_layer *)net.layers[i];
+           forward_crop_layer(layer, input);
+           input = layer.output;
+           }
+           else if(net.types[i] == NORMALIZATION){
+           normalization_layer layer = *(normalization_layer *)net.layers[i];
+           forward_normalization_layer(layer, input);
+           input = layer.output;
+           }
+         */
     }
 }
 
@@ -99,6 +102,14 @@
             connected_layer layer = *(connected_layer *)net.layers[i];
             backward_connected_layer_gpu(layer, prev_input, prev_delta);
         }
+        else if(net.types[i] == MAXPOOL){
+            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+            backward_maxpool_layer_gpu(layer, prev_delta);
+        }
+        else if(net.types[i] == SOFTMAX){
+            softmax_layer layer = *(softmax_layer *)net.layers[i];
+            backward_softmax_layer_gpu(layer, prev_delta);
+        }
     }
 }
 
@@ -127,6 +138,14 @@
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.output_cl;
     }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output_cl;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.output_cl;
+    }
     return 0;
 }
 
@@ -140,6 +159,14 @@
         connected_layer layer = *(connected_layer *)net.layers[i];
         return layer.delta_cl;
     }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
+    else if(net.types[i] == SOFTMAX){
+        softmax_layer layer = *(softmax_layer *)net.layers[i];
+        return layer.delta_cl;
+    }
     return 0;
 }
 
@@ -330,7 +357,7 @@
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_maxpool_layer(layer, prev_delta);
         }
         else if(net.types[i] == NORMALIZATION){
             normalization_layer layer = *(normalization_layer *)net.layers[i];
@@ -338,7 +365,7 @@
         }
         else if(net.types[i] == SOFTMAX){
             softmax_layer layer = *(softmax_layer *)net.layers[i];
-            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
+            if(i != 0) backward_softmax_layer(layer, prev_delta);
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
@@ -351,6 +378,7 @@
     }
 }
 
+
 #ifdef GPU
 float train_network_datum_gpu(network net, float *x, float *y)
 {
@@ -364,13 +392,12 @@
         cl_write_array(*net.truth_cl, y, y_size);
     }
     forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
-    //int class = get_predicted_class_network(net);
     backward_network_gpu(net, *net.input_cl);
     float error = get_network_cost(net);
     update_network_gpu(net);
-    //return (y[class]?1:0);
     return error;
 }
+
 float train_network_sgd_gpu(network net, data d, int n)
 {
     int batch = net.batch;
diff --git a/src/opencl.c b/src/opencl.c
index 5aec33c..a2e7366 100644
--- a/src/opencl.c
+++ b/src/opencl.c
@@ -4,6 +4,7 @@
 #include <string.h>
 #include <time.h>
 #include <unistd.h>
+//#include <clBLAS.h>
 
 #include "opencl.h"
 #include "utils.h"
@@ -80,9 +81,9 @@
 
     }
     int index = getpid()%num_devices;
+    index = 0;
     printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
-    //info.device = devices[index];
-    info.device = devices[0];
+    info.device = devices[index];
     fprintf(stderr, "Found %d device(s)\n", num_devices);
     check_error(info);
 
@@ -94,10 +95,24 @@
     check_error(info);
     info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
     check_error(info);
+    for(i = 0; i < NUM_QUEUES; ++i){
+        info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
+        check_error(info);
+    }
+    //info.error = clblasSetup();
+    check_error(info);
     info.initialized = 1;
     return info;
 }
 
+void wait_for_queues()
+{
+    int i;
+    for(i = 0; i < NUM_QUEUES; ++i){
+        clFinish(cl.queues[i]);
+    }
+}
+
 cl_program cl_fprog(char *filename, char *options, cl_info info)
 {
 	size_t srcsize;
@@ -180,4 +195,14 @@
     return mem;
 }
 
+cl_mem cl_make_int_array(int *x, int n)
+{
+    cl_setup();
+    cl_mem mem = clCreateBuffer(cl.context,
+            CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
+            sizeof(int)*n, x, &cl.error);
+    check_error(cl);
+    return mem;
+}
+
 #endif
diff --git a/src/opencl.h b/src/opencl.h
index 9cf3acd..aedc056 100644
--- a/src/opencl.h
+++ b/src/opencl.h
@@ -7,6 +7,8 @@
 #include <CL/cl.h>
 #endif
 
+#define NUM_QUEUES 8
+
 typedef struct {
     int initialized;
     cl_int error;
@@ -14,16 +16,19 @@
     cl_device_id device;
     cl_context context;
     cl_command_queue queue;
+    cl_command_queue queues[NUM_QUEUES];
 }cl_info;
 
 extern cl_info cl;
 
 void cl_setup();
+void wait_for_queues();
 void check_error(cl_info info);
 cl_kernel get_kernel(char *filename, char *kernelname, char *options);
 void cl_read_array(cl_mem mem, float *x, int n);
 void cl_write_array(cl_mem mem, float *x, int n);
 cl_mem cl_make_array(float *x, int n);
+cl_mem cl_make_int_array(int *x, int n);
 void cl_copy_array(cl_mem src, cl_mem dst, int n);
 cl_mem cl_sub_array(cl_mem src, int offset, int size);
 #endif
diff --git a/src/softmax_layer.c b/src/softmax_layer.c
index b6e9fe9..dae332e 100644
--- a/src/softmax_layer.c
+++ b/src/softmax_layer.c
@@ -1,5 +1,6 @@
 #include "softmax_layer.h"
 #include "mini_blas.h"
+#include <float.h>
 #include <math.h>
 #include <stdlib.h>
 #include <stdio.h>
@@ -13,36 +14,25 @@
     layer->output = calloc(inputs*batch, sizeof(float));
     layer->delta = calloc(inputs*batch, sizeof(float));
     layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
+    #ifdef GPU
+    layer->output_cl = cl_make_array(layer->output, inputs*batch); 
+    layer->delta_cl = cl_make_array(layer->delta, inputs*batch); 
+    #endif
     return layer;
 }
 
-/* UNSTABLE!
-void forward_softmax_layer(const softmax_layer layer, float *input)
-{
-    int i;
-    float sum = 0;
-    for(i = 0; i < layer.inputs; ++i){
-        sum += exp(input[i]);
-    }
-    for(i = 0; i < layer.inputs; ++i){
-        layer.output[i] = exp(input[i])/sum;
-    }
-}
-*/
 void forward_softmax_layer(const softmax_layer layer, float *input)
 {
     int i,b;
     for(b = 0; b < layer.batch; ++b){
         float sum = 0;
-        float largest = 0;
+        float largest = -FLT_MAX;
         for(i = 0; i < layer.inputs; ++i){
             if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
         }
         for(i = 0; i < layer.inputs; ++i){
             sum += exp(input[i+b*layer.inputs]-largest);
-            //printf("%f, ", input[i]);
         }
-        //printf("\n");
         if(sum) sum = largest+log(sum);
         else sum = largest-100;
         for(i = 0; i < layer.inputs; ++i){
@@ -51,33 +41,68 @@
     }
 }
 
-void backward_softmax_layer(const softmax_layer layer, float *input, float *delta)
+void backward_softmax_layer(const softmax_layer layer, float *delta)
 {
-/*
-    int i,j,b;
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.inputs; ++i){
-            for(j = 0; j < layer.inputs; ++j){
-                int d = (i==j);
-                layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = 
-                        layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
-            }
-        }
-    }
-    for(b = 0; b < layer.batch; ++b){
-        int M = layer.inputs;
-        int N = 1;
-        int K = layer.inputs;
-        float *A = layer.jacobian + b*layer.inputs*layer.inputs;
-        float *B = layer.delta + b*layer.inputs;
-        float *C = delta + b*layer.inputs;
-        gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
-    }
-    */
-
     int i;
     for(i = 0; i < layer.inputs*layer.batch; ++i){
         delta[i] = layer.delta[i];
     }
 }
 
+#ifdef GPU
+cl_kernel get_softmax_forward_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/softmax_layer.cl", "forward", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
+{
+    cl_setup();
+    cl_kernel kernel = get_softmax_forward_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.batch};
+
+    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
+{
+    copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
+}
+#endif
+
+/* This is if you want softmax w/o log-loss classification. You probably don't.
+   int i,j,b;
+   for(b = 0; b < layer.batch; ++b){
+   for(i = 0; i < layer.inputs; ++i){
+   for(j = 0; j < layer.inputs; ++j){
+   int d = (i==j);
+   layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = 
+   layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
+   }
+   }
+   }
+   for(b = 0; b < layer.batch; ++b){
+   int M = layer.inputs;
+   int N = 1;
+   int K = layer.inputs;
+   float *A = layer.jacobian + b*layer.inputs*layer.inputs;
+   float *B = layer.delta + b*layer.inputs;
+   float *C = delta + b*layer.inputs;
+   gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
+   }
+ */
diff --git a/src/softmax_layer.cl b/src/softmax_layer.cl
new file mode 100644
index 0000000..77da521
--- /dev/null
+++ b/src/softmax_layer.cl
@@ -0,0 +1,21 @@
+
+__kernel void forward(int n, __global float *input, __global float *output)
+{
+    int b = get_global_id(0);
+
+    int i;
+    float sum = 0;
+    float largest = -INFINITY;
+    for(i = 0; i < n; ++i){
+        int val = input[i+b*n];
+        largest = (val>largest) ? val : largest;
+    }
+    for(i = 0; i < n; ++i){
+        sum += exp(input[i+b*n]-largest);
+    }
+    sum = (sum != 0) ? largest+log(sum) : largest-100;
+    for(i = 0; i < n; ++i){
+        output[i+b*n] = exp(input[i+b*n]-sum);
+    }
+}
+
diff --git a/src/softmax_layer.h b/src/softmax_layer.h
index 2275250..2f9f979 100644
--- a/src/softmax_layer.h
+++ b/src/softmax_layer.h
@@ -1,16 +1,27 @@
 #ifndef SOFTMAX_LAYER_H
 #define SOFTMAX_LAYER_H
 
+#include "opencl.h"
+
 typedef struct {
     int inputs;
     int batch;
     float *delta;
     float *output;
     float *jacobian;
+    #ifdef GPU
+    cl_mem delta_cl;
+    cl_mem output_cl;
+    #endif
 } softmax_layer;
 
 softmax_layer *make_softmax_layer(int batch, int inputs);
 void forward_softmax_layer(const softmax_layer layer, float *input);
-void backward_softmax_layer(const softmax_layer layer, float *input, float *delta);
+void backward_softmax_layer(const softmax_layer layer, float *delta);
+
+#ifdef GPU
+void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
+void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
+#endif
 
 #endif
diff --git a/src/utils.c b/src/utils.c
index 8a65ba7..a883ad8 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -4,6 +4,11 @@
 #include <string.h>
 #include <math.h>
 
+float sec(clock_t clocks)
+{
+    return (float)clocks/CLOCKS_PER_SEC;
+}
+
 void error(char *s)
 {
     fprintf(stderr, "Error: %s\n", s);
diff --git a/src/utils.h b/src/utils.h
index f38af33..49948f5 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -1,6 +1,7 @@
 #ifndef UTILS_H
 #define UTILS_H
 #include <stdio.h>
+#include <time.h>
 #include "list.h"
 
 void error(char *s);
@@ -25,5 +26,6 @@
 float mean_array(float *a, int n);
 float variance_array(float *a, int n);
 float **one_hot_encode(float *a, int n, int k);
+float sec(clock_t clocks);
 #endif
 

--
Gitblit v1.10.0