From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/activation_kernels.cu |   95 ++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 93 insertions(+), 2 deletions(-)

diff --git a/src/activation_kernels.cu b/src/activation_kernels.cu
index 5ee1524..d5f25a0 100644
--- a/src/activation_kernels.cu
+++ b/src/activation_kernels.cu
@@ -1,19 +1,78 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
 extern "C" {
 #include "activations.h"
 #include "cuda.h"
 }
 
+
+__device__ float lhtan_activate_kernel(float x)
+{
+    if(x < 0) return .001*x;
+    if(x > 1) return .001*(x-1) + 1;
+    return x;
+}
+__device__ float lhtan_gradient_kernel(float x)
+{
+    if(x > 0 && x < 1) return 1;
+    return .001;
+}
+
+__device__ float hardtan_activate_kernel(float x)
+{
+    if (x < -1) return -1;
+    if (x > 1) return 1;
+    return x;
+}
 __device__ float linear_activate_kernel(float x){return x;}
 __device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));}
+__device__ float loggy_activate_kernel(float x){return 2./(1. + exp(-x)) - 1;}
 __device__ float relu_activate_kernel(float x){return x*(x>0);}
+__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(exp(x)-1);}
+__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01*x;}
 __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
-__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
+__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1*x;}
+__device__ float tanh_activate_kernel(float x){return (2/(1 + exp(-2*x)) - 1);}
+__device__ float plse_activate_kernel(float x)
+{
+    if(x < -4) return .01 * (x + 4);
+    if(x > 4)  return .01 * (x - 4) + 1;
+    return .125*x + .5;
+}
+__device__ float stair_activate_kernel(float x)
+{
+    int n = floor(x);
+    if (n%2 == 0) return floor(x/2.);
+    else return (x - n) + floor(x/2.);
+}
  
+
+__device__ float hardtan_gradient_kernel(float x)
+{
+    if (x > -1 && x < 1) return 1;
+    return 0;
+}
 __device__ float linear_gradient_kernel(float x){return 1;}
 __device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
+__device__ float loggy_gradient_kernel(float x)
+{
+    float y = (x+1.)/2.;
+    return 2*(1-y)*y;
+}
 __device__ float relu_gradient_kernel(float x){return (x>0);}
+__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
+__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01;}
 __device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
+__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1;}
 __device__ float tanh_gradient_kernel(float x){return 1-x*x;}
+__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;}
+__device__ float stair_gradient_kernel(float x)
+{
+    if (floor(x) == x) return 0;
+    return 1;
+}
 
 __device__ float activate_kernel(float x, ACTIVATION a)
 {
@@ -22,12 +81,28 @@
             return linear_activate_kernel(x);
         case LOGISTIC:
             return logistic_activate_kernel(x);
+        case LOGGY:
+            return loggy_activate_kernel(x);
         case RELU:
             return relu_activate_kernel(x);
+        case ELU:
+            return elu_activate_kernel(x);
+        case RELIE:
+            return relie_activate_kernel(x);
         case RAMP:
             return ramp_activate_kernel(x);
+        case LEAKY:
+            return leaky_activate_kernel(x);
         case TANH:
             return tanh_activate_kernel(x);
+        case PLSE:
+            return plse_activate_kernel(x);
+        case STAIR:
+            return stair_activate_kernel(x);
+        case HARDTAN:
+            return hardtan_activate_kernel(x);
+        case LHTAN:
+            return lhtan_activate_kernel(x);
     }
     return 0;
 }
@@ -39,12 +114,28 @@
             return linear_gradient_kernel(x);
         case LOGISTIC:
             return logistic_gradient_kernel(x);
+        case LOGGY:
+            return loggy_gradient_kernel(x);
         case RELU:
             return relu_gradient_kernel(x);
+        case ELU:
+            return elu_gradient_kernel(x);
+        case RELIE:
+            return relie_gradient_kernel(x);
         case RAMP:
             return ramp_gradient_kernel(x);
+        case LEAKY:
+            return leaky_gradient_kernel(x);
         case TANH:
             return tanh_gradient_kernel(x);
+        case PLSE:
+            return plse_gradient_kernel(x);
+        case STAIR:
+            return stair_gradient_kernel(x);
+        case HARDTAN:
+            return hardtan_gradient_kernel(x);
+        case LHTAN:
+            return lhtan_gradient_kernel(x);
     }
     return 0;
 }
@@ -63,7 +154,7 @@
 
 extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) 
 {
-    activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
+    activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
     check_error(cudaPeekAtLastError());
 }
 

--
Gitblit v1.10.0