From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/batchnorm_layer.c |   83 ++++++++++-------------------------------
 1 files changed, 21 insertions(+), 62 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 0151582..d35d9d2 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -54,8 +54,8 @@
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
 #ifdef CUDNN
 	cudnnCreateTensorDescriptor(&layer.normTensorDesc);
-	cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
-	cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+	cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+	cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
 	cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
 #endif
 #endif
@@ -176,47 +176,6 @@
     cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
     cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
 }
-/*
-void forward_batchnorm_layer_gpu(layer l, network_state state)
-{
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-    if(l.type == CONNECTED){
-        l.out_c = l.outputs;
-        l.out_h = l.out_w = 1;
-    }
-    if (state.train) {
-        fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-        fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
-
-        scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
-        axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-        scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
-        axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
-
-        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-        normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-    } else {
-        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-    }
-
-    scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-}
-
-void backward_batchnorm_layer_gpu(const layer l, network_state state)
-{
-    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
-
-    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-
-    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
-    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
-    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-}
-#endif
-*/
-
 
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
@@ -230,19 +189,19 @@
 			CUDNN_BATCHNORM_SPATIAL,
 			&one,
 			&zero,
-			l.dstTensorDesc,
-			l.x_gpu,
-			l.dstTensorDesc,
-			l.output_gpu,
+			l.normDstTensorDesc,
+			l.x_gpu,				// input
+			l.normDstTensorDesc,
+			l.output_gpu,			// output
 			l.normTensorDesc,
 			l.scales_gpu,
 			l.biases_gpu,
 			.01,
-			l.rolling_mean_gpu,
-			l.rolling_variance_gpu,
+			l.rolling_mean_gpu,		// output (should be FP32)
+			l.rolling_variance_gpu,	// output (should be FP32)
 			.00001,
-			l.mean_gpu,
-			l.variance_gpu);
+			l.mean_gpu,			// output (should be FP32)
+			l.variance_gpu);	// output (should be FP32)
 #else
 		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
 		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
@@ -283,19 +242,19 @@
 		&zero,
 		&one,
 		&one,
-		l.dstTensorDesc,
-		l.x_gpu,
-		l.dstTensorDesc,
-		l.delta_gpu,
-		l.dstTensorDesc,
-		l.x_norm_gpu,
+		l.normDstTensorDesc,
+		l.x_gpu,				// input
+		l.normDstTensorDesc,
+		l.delta_gpu,			// input
+		l.normDstTensorDesc,
+		l.x_norm_gpu,			// output
 		l.normTensorDesc,
-		l.scales_gpu,
-		l.scale_updates_gpu,
-		l.bias_updates_gpu,
+		l.scales_gpu,			// output (should be FP32)
+		l.scale_updates_gpu,	// output (should be FP32)
+		l.bias_updates_gpu,		// output (should be FP32)
 		.00001,
-		l.mean_gpu,
-		l.variance_gpu);
+		l.mean_gpu,				// input (should be FP32)
+		l.variance_gpu);		// input (should be FP32)
 	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
 #else
 	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);

--
Gitblit v1.10.0