From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/convolutional_kernels.cu |  361 ++++++++++++++++++++++++++++++++++++++++++++++-----
 1 files changed, 326 insertions(+), 35 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 2376835..324fc50 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -2,6 +2,10 @@
 #include "curand.h"
 #include "cublas_v2.h"
 
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")  
+#endif
+
 extern "C" {
 #include "convolutional_layer.h"
 #include "batchnorm_layer.h"
@@ -17,7 +21,7 @@
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= n) return;
-    binary[i] = (x[i] > 0) ? 1 : -1;
+    binary[i] = (x[i] >= 0) ? 1 : -1;
 }
 
 void binarize_gpu(float *x, int n, float *binary)
@@ -33,7 +37,7 @@
     int i = 0;
     float mean = 0;
     for(i = 0; i < n; ++i){
-        mean += abs(input[i*size + s]);
+        mean += fabs(input[i*size + s]);
     }
     mean = mean / n;
     for(i = 0; i < n; ++i){
@@ -48,52 +52,177 @@
 }
 
 
-__global__ void binarize_filters_kernel(float *filters, int n, int size, float *binary)
+__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
 {
     int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (f >= n) return;
     int i = 0;
     float mean = 0;
     for(i = 0; i < size; ++i){
-        mean += abs(filters[f*size + i]);
+        mean += fabs(weights[f*size + i]);
     }
     mean = mean / size;
     for(i = 0; i < size; ++i){
-        binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
+        binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
+        //binary[f*size + i] = weights[f*size + i];
     }
 }
 
-void binarize_filters_gpu(float *filters, int n, int size, float *binary)
+void binarize_weights_gpu(float *weights, int n, int size, float *binary)
 {
-    binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, binary);
+    binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary);
     check_error(cudaPeekAtLastError());
 }
 
+__global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
+{
+	int idx = blockIdx.x * blockDim.x + threadIdx.x;
+	if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
+	//if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
+}
+
+void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
+	cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
+}
+
+__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
+{
+	int idx = blockIdx.x * blockDim.x + threadIdx.x;
+	if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
+	//if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
+}
+
+void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
+	cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
+}
+
+half *cuda_make_f16_from_f32_array(float *src, size_t n)
+{
+	half *dst16;
+	size_t size = sizeof(half)*n;
+	check_error(cudaMalloc((void **)&dst16, size));
+	if (src) {
+		cuda_convert_f32_to_f16(src, n, (float *)dst16);
+	}
+	if (!dst16) error("Cuda malloc failed\n");
+	return dst16;
+}
+
 void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
 {
-    int i;
-
     fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
     if(l.binary){
-        binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
+        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
         swap_binary(&l);
     }
 
     if(l.xnor){
-        binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
+        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
         swap_binary(&l);
         binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
         state.input = l.binary_input_gpu;
     }
 
 #ifdef CUDNN
-    float one = 1;
+	float one = 1;	// alpha[0], beta[0] is float for HALF and FLOAT
+	float alpha = 1, beta = 0; 
+
+#ifdef CUDNN_HALF
+	// Note: For improved performance it is advised to use beta[0] = 0.0. 
+	// For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH;
+	// 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF
+	// 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
+	// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
+
+	const size_t input16_size = l.batch*l.c*l.w*l.h;
+	const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w;
+
+	if (*state.net.max_input16_size < input16_size) {
+		//printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size);
+		*state.net.max_input16_size = input16_size;
+		if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
+		*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
+	}
+	float *input16 = *state.net.input16_gpu;
+
+	if (*state.net.max_output16_size < output16_size) {
+		*state.net.max_output16_size = output16_size;
+		if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
+		*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
+	}
+	float *output16 = *state.net.output16_gpu;
+
+	cuda_convert_f32_to_f16(state.input, input16_size, input16);
+
+	//fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
+	cudnnConvolutionForward(cudnn_handle(),
+		&alpha,
+		l.srcTensorDesc,
+		input16,
+		l.weightDesc,
+		l.weights_gpu16,
+		l.convDesc,
+		l.fw_algo,
+		state.workspace,
+		l.workspace_size,
+		&beta,
+		l.dstTensorDesc,
+		output16);
+	
+
+	if (l.batch_normalize) 
+	{		
+		if (state.train) // Training
+		{
+			copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
+			//cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+			float one = 1;
+			float zero = 0;
+			// Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
+			// compared to FP32, it�s just that the statistics and value adjustment should be done in FP32.
+			cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+				CUDNN_BATCHNORM_SPATIAL,
+				&one,
+				&zero,
+				l.normDstTensorDescF16,
+				l.x_gpu,			// input
+				l.normDstTensorDescF16,
+				output16,			// output
+				l.normTensorDesc,
+				l.scales_gpu,
+				l.biases_gpu,
+				.01,
+				l.rolling_mean_gpu,		// output (should be FP32)
+				l.rolling_variance_gpu,	// output (should be FP32)
+				.00001,
+				l.mean_gpu,			// output (should be FP32)
+				l.variance_gpu);	// output (should be FP32)
+
+			cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+			//forward_batchnorm_layer_gpu(l, state);
+		}
+		else // Detection
+		{
+			cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+			normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+			scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+			add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+		}
+	}
+	else // BIAS only
+	{
+		cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}	
+
+#else
+
     cudnnConvolutionForward(cudnn_handle(),
                 &one,
                 l.srcTensorDesc,
                 state.input,
-                l.filterDesc,
-                l.filters_gpu,
+                l.weightDesc,
+                l.weights_gpu,
                 l.convDesc,
                 l.fw_algo,
                 state.workspace,
@@ -101,28 +230,36 @@
                 &one,
                 l.dstTensorDesc,
                 l.output_gpu);
+#endif	// CUDNN_HALF
+
 
 #else
+    int i;
     int m = l.n;
     int k = l.size*l.size*l.c;
     int n = l.out_w*l.out_h;
     for(i = 0; i < l.batch; ++i){
         im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
-        float * a = l.filters_gpu;
+        float * a = l.weights_gpu;
         float * b = state.workspace;
         float * c = l.output_gpu;
         gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
     }
 #endif
 
+#ifndef CUDNN_HALF
     if (l.batch_normalize) {
         forward_batchnorm_layer_gpu(l, state);
-    }
-    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+	else {
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+#endif // no CUDNN_HALF
 
     activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
     //if(l.dot > 0) dot_error_gpu(l);
     if(l.binary || l.xnor) swap_binary(&l);
+	//cudaDeviceSynchronize();	// for correct profiling of performance
 }
 
 void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
@@ -131,14 +268,130 @@
 
     backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
 
+#ifndef CUDNN_HALF
     if(l.batch_normalize){
         backward_batchnorm_layer_gpu(l, state);
+    } else {
+		//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
     }
+#endif // no CUDNN_HALF
     float *original_input = state.input;
 
     if(l.xnor) state.input = l.binary_input_gpu;
 #ifdef CUDNN
-    float one = 1;
+	float one = 1;
+	float alpha = 1, beta = 0;
+
+#ifdef CUDNN_HALF
+		
+	const size_t input16_size = l.batch*l.c*l.w*l.h;
+	const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h;
+	
+	if (*state.net.max_input16_size < input16_size) {		
+		*state.net.max_input16_size = input16_size;
+		if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
+		*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
+	}
+	float *input16 = *state.net.input16_gpu;
+
+	if (*state.net.max_output16_size < delta16_size) {
+		*state.net.max_output16_size = delta16_size;
+		if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
+		*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
+	}
+	float *delta16 = *state.net.output16_gpu;
+
+	cuda_convert_f32_to_f16(state.input, input16_size, input16);
+	cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
+
+	if (l.batch_normalize) {
+		//if (!state.train) {
+		//	l.mean_gpu = l.rolling_mean_gpu;
+		//	l.variance_gpu = l.rolling_variance_gpu;
+		//}
+		float one = 1;
+		float zero = 0;
+		cudnnBatchNormalizationBackward(cudnn_handle(),
+			CUDNN_BATCHNORM_SPATIAL,
+			&one,
+			&zero,
+			&one,
+			&one,
+			l.normDstTensorDescF16,
+			l.x_gpu,				// input
+			l.normDstTensorDescF16,
+			delta16,				// input
+			l.normDstTensorDescF16,
+			l.x_norm_gpu,			// output
+			l.normTensorDesc,
+			l.scales_gpu,			// output (should be FP32)
+			l.scale_updates_gpu,	// output (should be FP32)
+			l.bias_updates_gpu,		// output (should be FP32)
+			.00001,
+			l.mean_gpu,				// input (should be FP32)
+			l.variance_gpu);		// input (should be FP32)
+		copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
+		//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
+	}
+	else
+	{
+		//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+
+	// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
+	// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
+
+	// calculate conv weight updates
+	// Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum
+	//   so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
+	cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16);
+
+	cudnnConvolutionBackwardFilter(cudnn_handle(),
+		&one,
+		l.srcTensorDesc,
+		input16, //state.input,
+		l.ddstTensorDesc,
+		delta16, //l.delta_gpu,
+		l.convDesc,
+		l.bf_algo,
+		state.workspace,
+		l.workspace_size,
+		&one,
+		l.dweightDesc,
+		l.weight_updates_gpu16);	// l.weight_updates_gpu);
+
+	cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu);
+
+	if (state.delta) {
+		if (l.binary || l.xnor) swap_binary(&l);
+
+		// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
+		// calculate delta for the next layer
+		// convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
+		// get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)	
+		cudnnConvolutionBackwardData(cudnn_handle(),
+			&alpha,
+			l.weightDesc,
+			l.weights_gpu16, //l.weights_gpu,
+			l.ddstTensorDesc,
+			delta16, //l.delta_gpu,
+			l.convDesc,
+			l.bd_algo,
+			state.workspace,
+			l.workspace_size,
+			&beta,
+			l.dsrcTensorDesc,
+			input16);	// state.delta);
+
+		cuda_convert_f16_to_f32(input16, input16_size, state.delta);
+
+		if (l.binary || l.xnor) swap_binary(&l);
+		if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
+	}
+#else	// CUDNN_HALF
+
+	// calculate conv weight updates
+	// if used: beta=1 then loss decreases faster
     cudnnConvolutionBackwardFilter(cudnn_handle(),
             &one,
             l.srcTensorDesc,
@@ -150,15 +403,17 @@
             state.workspace,
             l.workspace_size,
             &one,
-            l.dfilterDesc,
-            l.filter_updates_gpu);
+            l.dweightDesc,
+            l.weight_updates_gpu);
 
     if(state.delta){
         if(l.binary || l.xnor) swap_binary(&l);
+		// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
+		// calculate delta for the next layer
         cudnnConvolutionBackwardData(cudnn_handle(),
                 &one,
-                l.filterDesc,
-                l.filters_gpu,
+                l.weightDesc,
+                l.weights_gpu,
                 l.ddstTensorDesc,
                 l.delta_gpu,
                 l.convDesc,
@@ -172,7 +427,9 @@
         if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
     }
 
-#else
+#endif	// CUDNN_HALF
+
+#else	// CUDNN
     int m = l.n;
     int n = l.size*l.size*l.c;
     int k = l.out_w*l.out_h;
@@ -181,14 +438,14 @@
     for(i = 0; i < l.batch; ++i){
         float * a = l.delta_gpu;
         float * b = state.workspace;
-        float * c = l.filter_updates_gpu;
+        float * c = l.weight_updates_gpu;
 
         im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
         gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
 
         if(state.delta){
             if(l.binary || l.xnor) swap_binary(&l);
-            float * a = l.filters_gpu;
+            float * a = l.weights_gpu;
             float * b = l.delta_gpu;
             float * c = state.workspace;
 
@@ -206,43 +463,77 @@
 
 void pull_convolutional_layer(convolutional_layer layer)
 {
-    cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
     if (layer.batch_normalize){
         cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
         cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
         cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
     }
+    if (layer.adam){
+        cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
+        cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
+    }
 }
 
 void push_convolutional_layer(convolutional_layer layer)
 {
-    cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
+#ifdef CUDNN_HALF
+	cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16);
+#endif
     cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
     if (layer.batch_normalize){
         cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
         cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
         cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
     }
+    if (layer.adam){
+        cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
+        cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
+    }
 }
 
 void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-
     axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
     scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
-    scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+    if(layer.scales_gpu){
+        axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
+        scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+    }
 
-    axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
-    axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
-    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
+    if(layer.adam){
+        scal_ongpu(size, layer.B1, layer.m_gpu, 1);
+        scal_ongpu(size, layer.B2, layer.v_gpu, 1);
+
+        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+
+        axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
+        mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
+        axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);
+
+        adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1);
+        fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
+    }else{
+		// update weights:
+		// weights_gpu = weights_gpu*(1 - decay*lr) + weight_updates_gpu*lr / (batch*subdivision) =
+		//  weights_gpu*(1 - 0.0005*0.001) + weight_updates_gpu*0.001/(64*8) = 
+		//  weights_gpu * 0.999 999 5 + weight_updates_gpu * 0.000 001 953125
+		// 
+		// weight_updates_gpu = (weight_updates_gpu - weights_gpu*decay*batch*subdivision)*momentum = 
+		//  (weight_updates_gpu - weights_gpu * 0.0005 * 64 * 8) * 0.9 = 
+		//  weight_updates_gpu*0.9 - weights_gpu*0.2304
+        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+        axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+        scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
+    }
 }
 
 

--
Gitblit v1.10.0