From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/region_layer.c |  134 ++++++++++++++++++++++++++++++++++++++++++--
 1 files changed, 128 insertions(+), 6 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 9ca71c6..a2ca440 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -130,12 +130,15 @@
     } else {		
 		// Focal loss
 		if (focal_loss) {
-			// Focal Loss for Dense Object Detection: http://blog.csdn.net/linmingan/article/details/77885832
+			// Focal Loss
 			float alpha = 0.5;	// 0.25 or 0.5
 			//float gamma = 2;	// hardcoded in many places of the grad-formula	
 
 			int ti = index + class_id;
-			float grad = -2 * (1 - output[ti])*logf(fmaxf(output[ti], 0.0000001))*output[ti] + (1 - output[ti])*(1 - output[ti]);
+			float pt = output[ti] + 0.000000000000001F;
+			// http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
+			float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);	// http://blog.csdn.net/linmingan/article/details/77885832	
+			//float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);	// https://github.com/unsky/focal-loss
 
 			for (n = 0; n < classes; ++n) {
 				delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
@@ -165,6 +168,13 @@
     return (x != x);
 }
 
+static int entry_index(layer l, int batch, int location, int entry)
+{
+	int n = location / (l.w*l.h);
+	int loc = location % (l.w*l.h);
+	return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
+}
+
 void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
 void forward_region_layer(const region_layer l, network_state state)
 {
@@ -246,6 +256,8 @@
                     int best_class_id = -1;
                     for(t = 0; t < l.max_boxes; ++t){
                         box truth = float_to_box(state.truth + t*5 + b*l.truths);
+						int class_id = state.truth[t * 5 + b*l.truths + 4];
+						if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
                         if(!truth.x) break;
                         float iou = box_iou(pred, truth);
                         if (iou > best_iou) {
@@ -283,6 +295,11 @@
         }
         for(t = 0; t < l.max_boxes; ++t){
             box truth = float_to_box(state.truth + t*5 + b*l.truths);
+			int class_id = state.truth[t * 5 + b*l.truths + 4];
+			if (class_id >= l.classes) {
+				printf("Warning: in txt-labels class_id=%d >= classes=%d in cfg-file\n", class_id, l.classes);
+				continue; // if label contains class_id more than number of classes in the cfg-file
+			}
 
             if(!truth.x) break;
             float best_iou = 0;
@@ -329,8 +346,6 @@
                 l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
             }
 
-
-            int class_id = state.truth[t*5 + b*l.truths + 4];
             if (l.map) class_id = l.map[class_id];
             delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
             ++count;
@@ -434,7 +449,7 @@
         cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
     cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
-	cudaStreamSynchronize(get_cuda_stream());
+	//cudaStreamSynchronize(get_cuda_stream());
     network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
@@ -444,7 +459,7 @@
     free(cpu_state.input);
     if(!state.train) return;
     cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
-	cudaStreamSynchronize(get_cuda_stream());
+	//cudaStreamSynchronize(get_cuda_stream());
     if(cpu_state.truth) free(cpu_state.truth);
 }
 
@@ -454,3 +469,110 @@
 }
 #endif
 
+
+void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
+{
+	int i;
+	int new_w = 0;
+	int new_h = 0;
+	if (((float)netw / w) < ((float)neth / h)) {
+		new_w = netw;
+		new_h = (h * netw) / w;
+	}
+	else {
+		new_h = neth;
+		new_w = (w * neth) / h;
+	}
+	for (i = 0; i < n; ++i) {
+		box b = dets[i].bbox;
+		b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
+		b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
+		b.w *= (float)netw / new_w;
+		b.h *= (float)neth / new_h;
+		if (!relative) {
+			b.x *= w;
+			b.w *= w;
+			b.y *= h;
+			b.h *= h;
+		}
+		dets[i].bbox = b;
+	}
+}
+
+
+void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
+{
+	int i, j, n, z;
+	float *predictions = l.output;
+	if (l.batch == 2) {
+		float *flip = l.output + l.outputs;
+		for (j = 0; j < l.h; ++j) {
+			for (i = 0; i < l.w / 2; ++i) {
+				for (n = 0; n < l.n; ++n) {
+					for (z = 0; z < l.classes + l.coords + 1; ++z) {
+						int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+						int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+						float swap = flip[i1];
+						flip[i1] = flip[i2];
+						flip[i2] = swap;
+						if (z == 0) {
+							flip[i1] = -flip[i1];
+							flip[i2] = -flip[i2];
+						}
+					}
+				}
+			}
+		}
+		for (i = 0; i < l.outputs; ++i) {
+			l.output[i] = (l.output[i] + flip[i]) / 2.;
+		}
+	}
+	for (i = 0; i < l.w*l.h; ++i) {
+		int row = i / l.w;
+		int col = i % l.w;
+		for (n = 0; n < l.n; ++n) {
+			int index = n*l.w*l.h + i;
+			for (j = 0; j < l.classes; ++j) {
+				dets[index].prob[j] = 0;
+			}
+			int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
+			int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
+			int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
+			float scale = l.background ? 1 : predictions[obj_index];
+			dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
+			dets[index].objectness = scale > thresh ? scale : 0;
+			if (dets[index].mask) {
+				for (j = 0; j < l.coords - 4; ++j) {
+					dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
+				}
+			}
+
+			int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
+			if (l.softmax_tree) {
+
+				hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
+				if (map) {
+					for (j = 0; j < 200; ++j) {
+						int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
+						float prob = scale*predictions[class_index];
+						dets[index].prob[j] = (prob > thresh) ? prob : 0;
+					}
+				}
+				else {
+					int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
+					dets[index].prob[j] = (scale > thresh) ? scale : 0;
+				}
+			}
+			else {
+				if (dets[index].objectness) {
+					for (j = 0; j < l.classes; ++j) {
+						int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
+						float prob = scale*predictions[class_index];
+						dets[index].prob[j] = (prob > thresh) ? prob : 0;
+					}
+				}
+			}
+		}
+	}
+	correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
+}

--
Gitblit v1.10.0