From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/route_layer.c |  124 ++++++++++++++++++++++++++++-------------
 1 files changed, 85 insertions(+), 39 deletions(-)

diff --git a/src/route_layer.c b/src/route_layer.c
index c8897b1..dce7118 100644
--- a/src/route_layer.c
+++ b/src/route_layer.c
@@ -3,83 +3,129 @@
 #include "blas.h"
 #include <stdio.h>
 
-route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
+route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
 {
-    printf("Route Layer:");
-    route_layer *layer = calloc(1, sizeof(route_layer));
-    layer->batch = batch;
-    layer->n = n;
-    layer->input_layers = input_layers;
-    layer->input_sizes = input_sizes;
+    fprintf(stderr,"route ");
+    route_layer l = {0};
+    l.type = ROUTE;
+    l.batch = batch;
+    l.n = n;
+    l.input_layers = input_layers;
+    l.input_sizes = input_sizes;
     int i;
     int outputs = 0;
     for(i = 0; i < n; ++i){
-        printf(" %d", input_layers[i]);
+        fprintf(stderr," %d", input_layers[i]);
         outputs += input_sizes[i];
     }
-    printf("\n");
-    layer->outputs = outputs;
-    layer->delta = calloc(outputs*batch, sizeof(float));
-    layer->output = calloc(outputs*batch, sizeof(float));;
+    fprintf(stderr, "\n");
+    l.outputs = outputs;
+    l.inputs = outputs;
+    l.delta =  calloc(outputs*batch, sizeof(float));
+    l.output = calloc(outputs*batch, sizeof(float));;
+
+    l.forward = forward_route_layer;
+    l.backward = backward_route_layer;
     #ifdef GPU
-    layer->delta_gpu = cuda_make_array(0, outputs*batch);
-    layer->output_gpu = cuda_make_array(0, outputs*batch);
+    l.forward_gpu = forward_route_layer_gpu;
+    l.backward_gpu = backward_route_layer_gpu;
+
+    l.delta_gpu =  cuda_make_array(l.delta, outputs*batch);
+    l.output_gpu = cuda_make_array(l.output, outputs*batch);
     #endif
-    return layer;
+    return l;
 }
 
-void forward_route_layer(const route_layer layer, network net)
+void resize_route_layer(route_layer *l, network *net)
+{
+    int i;
+    layer first = net->layers[l->input_layers[0]];
+    l->out_w = first.out_w;
+    l->out_h = first.out_h;
+    l->out_c = first.out_c;
+    l->outputs = first.outputs;
+    l->input_sizes[0] = first.outputs;
+    for(i = 1; i < l->n; ++i){
+        int index = l->input_layers[i];
+        layer next = net->layers[index];
+        l->outputs += next.outputs;
+        l->input_sizes[i] = next.outputs;
+        if(next.out_w == first.out_w && next.out_h == first.out_h){
+            l->out_c += next.out_c;
+        }else{
+            printf("%d %d, %d %d\n", next.out_w, next.out_h, first.out_w, first.out_h);
+            l->out_h = l->out_w = l->out_c = 0;
+        }
+    }
+    l->inputs = l->outputs;
+    l->delta =  realloc(l->delta, l->outputs*l->batch*sizeof(float));
+    l->output = realloc(l->output, l->outputs*l->batch*sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->output_gpu);
+    cuda_free(l->delta_gpu);
+    l->output_gpu  = cuda_make_array(l->output, l->outputs*l->batch);
+    l->delta_gpu   = cuda_make_array(l->delta,  l->outputs*l->batch);
+#endif
+    
+}
+
+void forward_route_layer(const route_layer l, network_state state)
 {
     int i, j;
     int offset = 0;
-    for(i = 0; i < layer.n; ++i){
-        float *input = get_network_output_layer(net, layer.input_layers[i]);
-        int input_size = layer.input_sizes[i];
-        for(j = 0; j < layer.batch; ++j){
-            copy_cpu(input_size, input + j*input_size, 1, layer.output + offset + j*layer.outputs, 1);
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *input = state.net.layers[index].output;
+        int input_size = l.input_sizes[i];
+        for(j = 0; j < l.batch; ++j){
+            copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
         }
         offset += input_size;
     }
 }
 
-void backward_route_layer(const route_layer layer, network net)
+void backward_route_layer(const route_layer l, network_state state)
 {
     int i, j;
     int offset = 0;
-    for(i = 0; i < layer.n; ++i){
-        float *delta = get_network_delta_layer(net, layer.input_layers[i]);
-        int input_size = layer.input_sizes[i];
-        for(j = 0; j < layer.batch; ++j){
-            copy_cpu(input_size, layer.delta + offset + j*layer.outputs, 1, delta + j*input_size, 1);
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *delta = state.net.layers[index].delta;
+        int input_size = l.input_sizes[i];
+        for(j = 0; j < l.batch; ++j){
+            axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
         }
         offset += input_size;
     }
 }
 
 #ifdef GPU
-void forward_route_layer_gpu(const route_layer layer, network net)
+void forward_route_layer_gpu(const route_layer l, network_state state)
 {
     int i, j;
     int offset = 0;
-    for(i = 0; i < layer.n; ++i){
-        float *input = get_network_output_gpu_layer(net, layer.input_layers[i]);
-        int input_size = layer.input_sizes[i];
-        for(j = 0; j < layer.batch; ++j){
-            copy_ongpu(input_size, input + j*input_size, 1, layer.output_gpu + offset + j*layer.outputs, 1);
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *input = state.net.layers[index].output_gpu;
+        int input_size = l.input_sizes[i];
+        for(j = 0; j < l.batch; ++j){
+            copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
         }
         offset += input_size;
     }
 }
 
-void backward_route_layer_gpu(const route_layer layer, network net)
+void backward_route_layer_gpu(const route_layer l, network_state state)
 {
     int i, j;
     int offset = 0;
-    for(i = 0; i < layer.n; ++i){
-        float *delta = get_network_delta_gpu_layer(net, layer.input_layers[i]);
-        int input_size = layer.input_sizes[i];
-        for(j = 0; j < layer.batch; ++j){
-            copy_ongpu(input_size, layer.delta_gpu + offset + j*layer.outputs, 1, delta + j*input_size, 1);
+    for(i = 0; i < l.n; ++i){
+        int index = l.input_layers[i];
+        float *delta = state.net.layers[index].delta_gpu;
+        int input_size = l.input_sizes[i];
+        for(j = 0; j < l.batch; ++j){
+            axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
         }
         offset += input_size;
     }

--
Gitblit v1.10.0