From 160eddddc4e265d5ee59a38797c30720bf46cd7c Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 27 May 2018 13:53:42 +0000
Subject: [PATCH] Minor fix

---
 src/yolo_v2_class.hpp |  582 +++++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 455 insertions(+), 127 deletions(-)

diff --git a/src/yolo_v2_class.hpp b/src/yolo_v2_class.hpp
index d60f359..00c2a5b 100644
--- a/src/yolo_v2_class.hpp
+++ b/src/yolo_v2_class.hpp
@@ -1,20 +1,4 @@
 #pragma once
-#include <memory>
-#include <vector>
-#include <deque>
-#include <algorithm>
-
-#ifdef OPENCV
-#include <opencv2/opencv.hpp>			// C++
-#include "opencv2/highgui/highgui_c.h"	// C
-#include "opencv2/imgproc/imgproc_c.h"	// C
-
-#include <opencv2/cudaoptflow.hpp>
-#include <opencv2/cudaimgproc.hpp>
-#include <opencv2/cudaarithm.hpp>
-#include <opencv2/core/cuda.hpp>
-#endif	// OPENCV
-
 #ifdef YOLODLL_EXPORTS
 #if defined(_MSC_VER)
 #define YOLODLL_API __declspec(dllexport) 
@@ -34,6 +18,7 @@
 	float prob;					// confidence - probability that the object was found correctly
 	unsigned int obj_id;		// class of object - from range [0, classes-1]
 	unsigned int track_id;		// tracking id for video (0 - untracked, 1 - inf - tracked object)
+	unsigned int frames_counter;// counter of frames on which the object was detected
 };
 
 struct image_t {
@@ -43,12 +28,25 @@
 	float *data;				// pointer to the image data
 };
 
+#ifdef __cplusplus
+#include <memory>
+#include <vector>
+#include <deque>
+#include <algorithm>
+
+#ifdef OPENCV
+#include <opencv2/opencv.hpp>			// C++
+#include "opencv2/highgui/highgui_c.h"	// C
+#include "opencv2/imgproc/imgproc_c.h"	// C
+#endif	// OPENCV
 
 class Detector {
 	std::shared_ptr<void> detector_gpu_ptr;
 	std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
+	const int cur_gpu_id;
 public:
 	float nms = .4;
+	bool wait_stream;
 
 	YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
 	YOLODLL_API ~Detector();
@@ -60,7 +58,18 @@
 	YOLODLL_API int get_net_width() const;
 	YOLODLL_API int get_net_height() const;
 
-	YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6);
+	YOLODLL_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true, 
+												int const frames_story = 10, int const max_dist = 150);
+
+	std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
+	{
+		if (img.data == NULL)
+			throw std::runtime_error("Image is empty");
+		auto detection_boxes = detect(img, thresh, use_mean);
+		float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
+		for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
+		return detection_boxes;
+	}
 
 #ifdef OPENCV
 	std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
@@ -68,17 +77,7 @@
 		if(mat.data == NULL)
 			throw std::runtime_error("Image is empty");
 		auto image_ptr = mat_to_image_resize(mat);
-		return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
-	}
-
-	std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
-	{
-		if (img.data == NULL)
-			throw std::runtime_error("Image is empty");
-		auto detection_boxes = detect(img, thresh, use_mean);
-		float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
-		for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
-		return detection_boxes;
+		return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
 	}
 
 	std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
@@ -89,12 +88,13 @@
 		return mat_to_image(det_mat);
 	}
 
-	static std::shared_ptr<image_t> mat_to_image(cv::Mat img)
+	static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
 	{
+		cv::Mat img;
+		cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
 		std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
 		std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
 		*image_ptr = ipl_to_image(ipl_small.get());
-		rgbgr_image(*image_ptr);
 		return image_ptr;
 	}
 
@@ -108,15 +108,17 @@
 		int c = src->nChannels;
 		int step = src->widthStep;
 		image_t out = make_image_custom(w, h, c);
-		int i, j, k, count = 0;;
+		int count = 0;
 
-		for (k = 0; k < c; ++k) {
-			for (i = 0; i < h; ++i) {
-				for (j = 0; j < w; ++j) {
-					out.data[count++] = data[i*step + j*c + k] / 255.;
+		for (int k = 0; k < c; ++k) {
+			for (int i = 0; i < h; ++i) {
+				int i_step = i*step;
+				for (int j = 0; j < w; ++j) {
+					out.data[count++] = data[i_step + j*c + k] / 255.;
 				}
 			}
 		}
+
 		return out;
 	}
 
@@ -137,122 +139,74 @@
 		return out;
 	}
 
-	static void rgbgr_image(image_t im)
-	{
-		int i;
-		for (i = 0; i < im.w*im.h; ++i) {
-			float swap = im.data[i];
-			im.data[i] = im.data[i + im.w*im.h * 2];
-			im.data[i + im.w*im.h * 2] = swap;
-		}
-	}
-
 #endif	// OPENCV
 
 };
 
 
-#if defined(TRACK_OPTFLOW) && defined(OPENCV)
+
+#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
+
+#include <opencv2/cudaoptflow.hpp>
+#include <opencv2/cudaimgproc.hpp>
+#include <opencv2/cudaarithm.hpp>
+#include <opencv2/core/cuda.hpp>
 
 class Tracker_optflow {
 public:
-	int gpu_id;
+	const int gpu_count;
+	const int gpu_id;
+	const int flow_error;
 
-	Tracker_optflow(int _gpu_id = 0) : gpu_id(_gpu_id)
+
+	Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
+		gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
+		flow_error((_flow_error > 0)? _flow_error:(win_size*4))
 	{
 		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
+		cv::cuda::setDevice(gpu_id);
+
+		stream = cv::cuda::Stream();
 
 		sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
-		//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(31, 31)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(31, 31);
-		//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(15, 15)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(15, 15);
+		sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size));	// 9, 15, 21, 31
+		sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level);		// +- 3 pt
+		sync_PyrLKOpticalFlow_gpu->setNumIters(iterations);	// 2000, def: 30
 
-		sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21));
-		sync_PyrLKOpticalFlow_gpu->setMaxLevel(50);	//sync_PyrLKOpticalFlow_gpu.maxLevel = 8;	// +-32 points	// def: 3
-		sync_PyrLKOpticalFlow_gpu->setNumIters(6000);	//sync_PyrLKOpticalFlow_gpu.iters = 8000;	// def: 30
+		cv::cuda::setDevice(old_gpu_id);
 	}
 
 	// just to avoid extra allocations
 	cv::cuda::GpuMat src_mat_gpu;
 	cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
-	cv::cuda::GpuMat tmp_grey_gpu;
 	cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
 	cv::cuda::GpuMat status_gpu, err_gpu;
 
 	cv::cuda::GpuMat src_grey_gpu;	// used in both functions
 	cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
+	cv::cuda::Stream stream;
 
-	void update_tracking_flow(cv::Mat src_mat)
+	std::vector<bbox_t> cur_bbox_vec;
+	std::vector<bool> good_bbox_vec_flags;
+	cv::Mat prev_pts_flow_cpu;
+
+	void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
 	{
-		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
-
-		cv::cuda::Stream stream;
-
-		if (src_mat.channels() == 3) {
-			if (src_mat_gpu.cols == 0) {
-				src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
-				src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
-			}
-
-			src_mat_gpu.upload(src_mat, stream);
-			cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream);
-		}
-		cv::cuda::setDevice(old_gpu_id);
-	}
-
-
-	std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec)
-	{
-		if (sync_PyrLKOpticalFlow_gpu.empty()) {
-			std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
-			return cur_bbox_vec;
-		}
-
-		int const old_gpu_id = cv::cuda::getDevice();
-		static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
-		if (gpu_count > gpu_id)
-			cv::cuda::setDevice(gpu_id);
-
-		cv::cuda::Stream stream;
-
-		if (dst_mat_gpu.cols == 0) {
-			dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
-			dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
-			tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
-		}
-
-
-		dst_mat_gpu.upload(dst_mat, stream);
-
-		cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream);
-
-		if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
-			stream.waitForCompletion();
-			src_grey_gpu = dst_grey_gpu.clone();
-			cv::cuda::setDevice(old_gpu_id);
-			return cur_bbox_vec;
-		}
-
-		cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu;
+		cur_bbox_vec = _cur_bbox_vec;
+		good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
+		cv::Mat prev_pts, cur_pts_flow_cpu;
 
 		for (auto &i : cur_bbox_vec) {
-			float x_center = (i.x + i.w / 2);
-			float y_center = (i.y + i.h / 2);
+			float x_center = (i.x + i.w / 2.0F);
+			float y_center = (i.y + i.h / 2.0F);
 			prev_pts.push_back(cv::Point2f(x_center, y_center));
 		}
 
-
 		if (prev_pts.rows == 0)
 			prev_pts_flow_cpu = cv::Mat();
 		else
 			cv::transpose(prev_pts, prev_pts_flow_cpu);
 
-
 		if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
 			prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
 			cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
@@ -262,16 +216,66 @@
 		}
 
 		prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
+	}
 
 
-		dst_grey_gpu.copyTo(tmp_grey_gpu, stream);
+	void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
+	{
+		int const old_gpu_id = cv::cuda::getDevice();
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(gpu_id);
+
+		if (src_mat.channels() == 3) {
+			if (src_mat_gpu.cols == 0) {
+				src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
+				src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
+			}
+
+			update_cur_bbox_vec(_cur_bbox_vec);
+
+			//src_grey_gpu.upload(src_mat, stream);	// use BGR
+			src_mat_gpu.upload(src_mat, stream);
+			cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
+		}
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(old_gpu_id);
+	}
+
+
+	std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
+	{
+		if (sync_PyrLKOpticalFlow_gpu.empty()) {
+			std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
+			return cur_bbox_vec;
+		}
+
+		int const old_gpu_id = cv::cuda::getDevice();
+		if(old_gpu_id != gpu_id)
+			cv::cuda::setDevice(gpu_id);
+
+		if (dst_mat_gpu.cols == 0) {
+			dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
+			dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
+		}
+
+		//dst_grey_gpu.upload(dst_mat, stream);	// use BGR
+		dst_mat_gpu.upload(dst_mat, stream);
+		cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
+
+		if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
+			stream.waitForCompletion();
+			src_grey_gpu = dst_grey_gpu.clone();
+			cv::cuda::setDevice(old_gpu_id);
+			return cur_bbox_vec;
+		}
 
 		////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);	// OpenCV 2.4.x
 		sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream);	// OpenCV 3.x
 
+		cv::Mat cur_pts_flow_cpu;
 		cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
 
-		tmp_grey_gpu.copyTo(src_grey_gpu, stream);
+		dst_grey_gpu.copyTo(src_grey_gpu, stream);
 
 		cv::Mat err_cpu, status_cpu;
 		err_gpu.download(err_cpu, stream);
@@ -281,25 +285,153 @@
 
 		std::vector<bbox_t> result_bbox_vec;
 
-		for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+		if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size()) 
 		{
-			cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
-			cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
+			for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+			{
+				cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
+				cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
 
-			float moved_x = cur_key_pt.x - prev_key_pt.x;
-			float moved_y = cur_key_pt.y - prev_key_pt.y;
+				float moved_x = cur_key_pt.x - prev_key_pt.x;
+				float moved_y = cur_key_pt.y - prev_key_pt.y;
 
-			if (err_cpu.cols > i &&  status_cpu.cols > i)
-				if (abs(moved_x) < 100 && abs(moved_y) < 100)
-					//if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0)
+				if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
+					if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
+						((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
 					{
 						cur_bbox_vec[i].x += moved_x + 0.5;
 						cur_bbox_vec[i].y += moved_y + 0.5;
 						result_bbox_vec.push_back(cur_bbox_vec[i]);
 					}
+					else good_bbox_vec_flags[i] = false;
+				else good_bbox_vec_flags[i] = false;
+
+				//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
+			}
 		}
 
-		cv::cuda::setDevice(old_gpu_id);
+		cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
+		cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
+
+		if (old_gpu_id != gpu_id)
+			cv::cuda::setDevice(old_gpu_id);
+
+		return result_bbox_vec;
+	}
+
+};
+
+#elif defined(TRACK_OPTFLOW) && defined(OPENCV)
+
+//#include <opencv2/optflow.hpp>
+#include <opencv2/video/tracking.hpp>
+
+class Tracker_optflow {
+public:
+	const int flow_error;
+
+
+	Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
+		flow_error((_flow_error > 0)? _flow_error:(win_size*4))
+	{
+		sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
+		sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size));	// 9, 15, 21, 31
+		sync_PyrLKOpticalFlow->setMaxLevel(max_level);		// +- 3 pt
+
+	}
+
+	// just to avoid extra allocations
+	cv::Mat dst_grey;
+	cv::Mat prev_pts_flow, cur_pts_flow;
+	cv::Mat status, err;
+
+	cv::Mat src_grey;	// used in both functions
+	cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
+
+	std::vector<bbox_t> cur_bbox_vec;
+	std::vector<bool> good_bbox_vec_flags;
+
+	void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
+	{
+		cur_bbox_vec = _cur_bbox_vec;
+		good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
+		cv::Mat prev_pts, cur_pts_flow;
+
+		for (auto &i : cur_bbox_vec) {
+			float x_center = (i.x + i.w / 2.0F);
+			float y_center = (i.y + i.h / 2.0F);
+			prev_pts.push_back(cv::Point2f(x_center, y_center));
+		}
+
+		if (prev_pts.rows == 0)
+			prev_pts_flow = cv::Mat();
+		else
+			cv::transpose(prev_pts, prev_pts_flow);
+	}
+
+
+	void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
+	{
+		if (new_src_mat.channels() == 3) {
+
+			update_cur_bbox_vec(_cur_bbox_vec);
+
+			cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
+		}
+	}
+
+
+	std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
+	{
+		if (sync_PyrLKOpticalFlow.empty()) {
+			std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
+			return cur_bbox_vec;
+		}
+
+		cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
+
+		if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
+			src_grey = dst_grey.clone();
+			return cur_bbox_vec;
+		}
+
+		if (prev_pts_flow.cols < 1) {
+			return cur_bbox_vec;
+		}
+
+		////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);	// OpenCV 2.4.x
+		sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err);	// OpenCV 3.x
+
+		dst_grey.copyTo(src_grey);
+
+		std::vector<bbox_t> result_bbox_vec;
+
+		if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
+		{
+			for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+			{
+				cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
+				cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
+
+				float moved_x = cur_key_pt.x - prev_key_pt.x;
+				float moved_y = cur_key_pt.y - prev_key_pt.y;
+
+				if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
+					if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
+						((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
+					{
+						cur_bbox_vec[i].x += moved_x + 0.5;
+						cur_bbox_vec[i].y += moved_y + 0.5;
+						result_bbox_vec.push_back(cur_bbox_vec[i]);
+					}
+					else good_bbox_vec_flags[i] = false;
+				else good_bbox_vec_flags[i] = false;
+
+				//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
+			}
+		}
+
+		prev_pts_flow = cur_pts_flow.clone();
 
 		return result_bbox_vec;
 	}
@@ -309,5 +441,201 @@
 
 class Tracker_optflow {};
 
-#endif	// defined(TRACK_OPTFLOW) && defined(OPENCV) 
+#endif	// defined(TRACK_OPTFLOW) && defined(OPENCV)
 
+
+#ifdef OPENCV
+
+static cv::Scalar obj_id_to_color(int obj_id) {
+	int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
+	int const offset = obj_id * 123457 % 6;
+	int const color_scale = 150 + (obj_id * 123457) % 100;
+	cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
+	color *= color_scale;
+	return color;
+}
+
+class preview_boxes_t {
+	enum { frames_history = 30 };	// how long to keep the history saved
+
+	struct preview_box_track_t {
+		unsigned int track_id, obj_id, last_showed_frames_ago;
+		bool current_detection;
+		bbox_t bbox;
+		cv::Mat mat_obj, mat_resized_obj;
+		preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
+	};
+	std::vector<preview_box_track_t> preview_box_track_id;
+	size_t const preview_box_size, bottom_offset;
+	bool const one_off_detections;
+public:
+	preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
+		preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
+	{}
+
+	void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
+	{
+		size_t const count_preview_boxes = src_mat.cols / preview_box_size;
+		if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
+
+		// increment frames history
+		for (auto &i : preview_box_track_id)
+			i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
+
+		// occupy empty boxes
+		for (auto &k : result_vec) {
+			bool found = false;
+			// find the same (track_id)
+			for (auto &i : preview_box_track_id) {
+				if (i.track_id == k.track_id) {
+					if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
+					found = true;
+					break;
+				}
+			}
+			if (!found) {
+				// find empty box
+				for (auto &i : preview_box_track_id) {
+					if (i.last_showed_frames_ago == frames_history) {
+						if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
+						i.track_id = k.track_id;
+						i.obj_id = k.obj_id;
+						i.bbox = k;
+						i.last_showed_frames_ago = 0;
+						break;
+					}
+				}
+			}
+		}
+
+		// draw preview box (from old or current frame)
+		for (size_t i = 0; i < preview_box_track_id.size(); ++i)
+		{
+			// get object image
+			cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
+			preview_box_track_id[i].current_detection = false;
+
+			for (auto &k : result_vec) {
+				if (preview_box_track_id[i].track_id == k.track_id) {
+					if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
+						preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
+					}
+					bbox_t b = k;
+					cv::Rect r(b.x, b.y, b.w, b.h);
+					cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
+					cv::Rect rect_roi = r & img_rect;
+					if (rect_roi.width > 1 || rect_roi.height > 1) {
+						cv::Mat roi = src_mat(rect_roi);
+						cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
+						preview_box_track_id[i].mat_obj = roi.clone();
+						preview_box_track_id[i].mat_resized_obj = dst.clone();
+						preview_box_track_id[i].current_detection = true;
+						preview_box_track_id[i].bbox = k;
+					}
+					break;
+				}
+			}
+		}
+	}
+
+
+	void draw(cv::Mat draw_mat, bool show_small_boxes = false)
+	{
+		// draw preview box (from old or current frame)
+		for (size_t i = 0; i < preview_box_track_id.size(); ++i)
+		{
+			auto &prev_box = preview_box_track_id[i];
+
+			// draw object image
+			cv::Mat dst = prev_box.mat_resized_obj;
+			if (prev_box.last_showed_frames_ago < frames_history &&
+				dst.size() == cv::Size(preview_box_size, preview_box_size))
+			{
+				cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
+				cv::Mat dst_roi = draw_mat(dst_rect_roi);
+				dst.copyTo(dst_roi);
+
+				cv::Scalar color = obj_id_to_color(prev_box.obj_id);
+				int thickness = (prev_box.current_detection) ? 5 : 1;
+				cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
+
+				unsigned int const track_id = prev_box.track_id;
+				std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
+				putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
+
+				std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
+				putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
+
+				if (!one_off_detections && prev_box.current_detection) {
+					cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
+						cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
+						color);
+				}
+
+				if (one_off_detections && show_small_boxes) {
+					cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
+						cv::Size(prev_box.bbox.w, prev_box.bbox.h));
+					unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
+					color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
+					if (prev_box.mat_obj.size() == src_rect_roi.size()) {
+						prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
+					}
+					cv::rectangle(draw_mat, src_rect_roi, color, thickness);
+					putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
+				}
+			}
+		}
+	}
+};
+#endif	// OPENCV
+
+//extern "C" {
+#endif	// __cplusplus
+
+/*
+	// C - wrappers
+	YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
+	YOLODLL_API void delete_detector();
+	YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
+	YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
+	YOLODLL_API bbox_t* detect(image_t img, int *result_size);
+	YOLODLL_API image_t load_img(char *image_filename);
+	YOLODLL_API void free_img(image_t m);
+
+#ifdef __cplusplus
+}	// extern "C"
+
+static std::shared_ptr<void> c_detector_ptr;
+static std::vector<bbox_t> c_result_vec;
+
+void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
+	c_detector_ptr = std::make_shared<YOLODLL_API Detector>(cfg_filename, weight_filename, gpu_id);
+}
+
+void delete_detector() { c_detector_ptr.reset(); }
+
+bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
+	c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
+	*result_size = c_result_vec.size();
+	return c_result_vec.data();
+}
+
+bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
+	c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
+	*result_size = c_result_vec.size();
+	return c_result_vec.data();
+}
+
+bbox_t* detect(image_t img, int *result_size) {
+	return detect_custom(img, 0.24, true, result_size);
+}
+
+image_t load_img(char *image_filename) {
+	return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
+}
+void free_img(image_t m) {
+	static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
+}
+
+#endif	// __cplusplus
+*/

--
Gitblit v1.10.0