From 16d06ec0db241261d0d030722e440206ed8aad77 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 29 Feb 2016 21:54:12 +0000
Subject: [PATCH] stuff

---
 src/classifier.c |  327 +++++++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 307 insertions(+), 20 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index 2f9a91f..fdbe534 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -2,6 +2,7 @@
 #include "utils.h"
 #include "parser.h"
 #include "option_list.h"
+#include "blas.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -69,6 +70,11 @@
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+
+    args.min = net.w;
+    args.max = net.max_crop;
+    args.size = net.w;
+
     args.paths = paths;
     args.classes = classes;
     args.n = imgs;
@@ -87,6 +93,16 @@
         load_thread = load_data_in_thread(args);
         printf("Loaded: %lf seconds\n", sec(clock()-time));
         time=clock();
+
+/*
+        int u;
+        for(u = 0; u < net.batch; ++u){
+            image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
+            show_image(im, "loaded");
+            cvWaitKey(0);
+        }
+        */
+
         float loss = train_network(net, train);
         if(avg_loss == -1) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
@@ -98,6 +114,11 @@
             sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
             save_weights(net, buff);
         }
+        if(*net.seen%100 == 0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup",backup_directory,base);
+            save_weights(net, buff);
+        }
     }
     char buff[256];
     sprintf(buff, "%s/%s.weights", backup_directory, base);
@@ -126,7 +147,7 @@
     char *label_list = option_find_str(options, "labels", "data/labels.list");
     char *valid_list = option_find_str(options, "valid", "data/train.list");
     int classes = option_find_int(options, "classes", 2);
-    int topk = option_find_int(options, "topk", 1);
+    int topk = option_find_int(options, "top", 1);
 
     char **labels = get_labels(label_list);
     list *plist = get_paths(valid_list);
@@ -138,7 +159,7 @@
     clock_t time;
     float avg_acc = 0;
     float avg_topk = 0;
-    int splits = 50;
+    int splits = m/1000;
     int num = (i+1)*m/splits - i*m/splits;
 
     data val, buffer;
@@ -146,13 +167,14 @@
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
+
     args.paths = paths;
     args.classes = classes;
     args.n = num;
     args.m = 0;
     args.labels = labels;
     args.d = &buffer;
-    args.type = CLASSIFICATION_DATA;
+    args.type = OLD_CLASSIFICATION_DATA;
 
     pthread_t load_thread = load_data_in_thread(args);
     for(i = 1; i <= splits; ++i){
@@ -178,6 +200,264 @@
     }
 }
 
+void validate_classifier_10(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        int w = net.w;
+        int h = net.h;
+        image im = load_image_color(paths[i], w, h);
+        int shift = 32;
+        image images[10];
+        images[0] = crop_image(im, -shift, -shift, w, h);
+        images[1] = crop_image(im, shift, -shift, w, h);
+        images[2] = crop_image(im, 0, 0, w, h);
+        images[3] = crop_image(im, -shift, shift, w, h);
+        images[4] = crop_image(im, shift, shift, w, h);
+        flip_image(im);
+        images[5] = crop_image(im, -shift, -shift, w, h);
+        images[6] = crop_image(im, shift, -shift, w, h);
+        images[7] = crop_image(im, 0, 0, w, h);
+        images[8] = crop_image(im, -shift, shift, w, h);
+        images[9] = crop_image(im, shift, shift, w, h);
+        float *pred = calloc(classes, sizeof(float));
+        for(j = 0; j < 10; ++j){
+            float *p = network_predict(net, images[j].data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            free_image(images[j]);
+        }
+        free_image(im);
+        top_k(pred, classes, topk, indexes);
+        free(pred);
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        image im = load_image_color(paths[i], 0, 0);
+        resize_network(&net, im.w, im.h);
+        //show_image(im, "orig");
+        //show_image(crop, "cropped");
+        //cvWaitKey(0);
+        float *pred = network_predict(net, im.data);
+
+        free_image(im);
+        top_k(pred, classes, topk, indexes);
+
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+
+void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        image im = load_image_color(paths[i], 0, 0);
+        image resized = resize_min(im, net.w);
+        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
+        //show_image(im, "orig");
+        //show_image(crop, "cropped");
+        //cvWaitKey(0);
+        float *pred = network_predict(net, crop.data);
+
+        free_image(im);
+        free_image(resized);
+        free_image(crop);
+        top_k(pred, classes, topk, indexes);
+
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
+void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
+{
+    int i, j;
+    network net = parse_network_cfg(filename);
+    set_batch_network(&net, 1);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    srand(time(0));
+
+    list *options = read_data_cfg(datacfg);
+
+    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *valid_list = option_find_str(options, "valid", "data/train.list");
+    int classes = option_find_int(options, "classes", 2);
+    int topk = option_find_int(options, "top", 1);
+
+    char **labels = get_labels(label_list);
+    list *plist = get_paths(valid_list);
+    int scales[] = {224, 256, 384, 480, 512};
+    int nscales = sizeof(scales)/sizeof(scales[0]);
+
+    char **paths = (char **)list_to_array(plist);
+    int m = plist->size;
+    free_list(plist);
+
+    float avg_acc = 0;
+    float avg_topk = 0;
+    int *indexes = calloc(topk, sizeof(int));
+
+    for(i = 0; i < m; ++i){
+        int class = -1;
+        char *path = paths[i];
+        for(j = 0; j < classes; ++j){
+            if(strstr(path, labels[j])){
+                class = j;
+                break;
+            }
+        }
+        float *pred = calloc(classes, sizeof(float));
+        image im = load_image_color(paths[i], 0, 0);
+        for(j = 0; j < nscales; ++j){
+            int w, h;
+            if(im.w < im.h){
+                w = scales[j];
+                h = (im.h*w)/im.w;
+            } else {
+                h = scales[j];
+                w = (im.w * h) / im.h;
+            }
+            resize_network(&net, w, h);
+            image r = resize_image(im, w, h);
+            float *p = network_predict(net, r.data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            flip_image(r);
+            p = network_predict(net, r.data);
+            axpy_cpu(classes, 1, p, 1, pred, 1);
+            free_image(r);
+        }
+        free_image(im);
+        top_k(pred, classes, topk, indexes);
+        free(pred);
+        if(indexes[0] == class) avg_acc += 1;
+        for(j = 0; j < topk; ++j){
+            if(indexes[j] == class) avg_topk += 1;
+        }
+
+        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
+    }
+}
+
 void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
 {
     network net = parse_network_cfg(cfgfile);
@@ -189,13 +469,14 @@
 
     list *options = read_data_cfg(datacfg);
 
-    char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *name_list = option_find_str(options, "names", 0);
+    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
     int top = option_find_int(options, "top", 1);
 
     int i = 0;
-    char **names = get_labels(label_list);
+    char **names = get_labels(name_list);
     clock_t time;
-    int indexes[10];
+    int *indexes = calloc(top, sizeof(int));
     char buff[256];
     char *input = buff;
     while(1){
@@ -208,7 +489,7 @@
             if(!input) return;
             strtok(input, "\n");
         }
-        image im = load_image_color(input, 256, 256);
+        image im = load_image_color(input, net.w, net.h);
         float *X = im.data;
         time=clock();
         float *predictions = network_predict(net, X);
@@ -223,10 +504,10 @@
     }
 }
 
-void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer)
+void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
 {
     int curr = 0;
-    network net = parse_network_cfg(filename);
+    network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
@@ -235,10 +516,8 @@
     list *options = read_data_cfg(datacfg);
 
     char *test_list = option_find_str(options, "test", "data/test.list");
-    char *label_list = option_find_str(options, "labels", "data/labels.list");
     int classes = option_find_int(options, "classes", 2);
 
-    char **labels = get_labels(label_list);
     list *plist = get_paths(test_list);
 
     char **paths = (char **)list_to_array(plist);
@@ -256,9 +535,9 @@
     args.classes = classes;
     args.n = net.batch;
     args.m = 0;
-    args.labels = labels;
+    args.labels = 0;
     args.d = &buffer;
-    args.type = CLASSIFICATION_DATA;
+    args.type = OLD_CLASSIFICATION_DATA;
 
     pthread_t load_thread = load_data_in_thread(args);
     for(curr = net.batch; curr < m; curr += net.batch){
@@ -276,19 +555,23 @@
 
         time=clock();
         matrix pred = network_predict_data(net, val);
-        
-        int i;
+
+        int i, j;
         if (target_layer >= 0){
-            layer l = net.layers[target_layer];
+            //layer l = net.layers[target_layer];
         }
 
-        for(i = 0; i < val.X.rows; ++i){
-
+        for(i = 0; i < pred.rows; ++i){
+            printf("%s", paths[curr-net.batch+i]);
+            for(j = 0; j < pred.cols; ++j){
+                printf("\t%g", pred.vals[i][j]);
+            }
+            printf("\n");
         }
 
         free_matrix(pred);
 
-        fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows);
+        fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr);
         free_data(val);
     }
 }
@@ -309,8 +592,12 @@
     int layer = layer_s ? atoi(layer_s) : -1;
     if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights);
-    else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer);
+    else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
     else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
+    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights);
+    else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
 }
 
 

--
Gitblit v1.10.0