From 176260d82a4d82ce4ce1f09cd6139a50e1a2aa84 Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sun, 16 Sep 2018 06:29:06 +0000
Subject: [PATCH] Card matching algo

---
 src/convolutional_layer.c | 1267 +++++++++++++++++++++++++++++++++++++++++----------------
 1 files changed, 913 insertions(+), 354 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index bb2135f..16e6d5f 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,418 +1,977 @@
 #include "convolutional_layer.h"
 #include "utils.h"
-#include "mini_blas.h"
+#include "batchnorm_layer.h"
+#include "im2col.h"
+#include "col2im.h"
+#include "blas.h"
+#include "gemm.h"
 #include <stdio.h>
 #include <time.h>
 
-int convolutional_out_height(convolutional_layer layer)
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")
+#endif
+
+#ifdef AI2
+#include "xnor_layer.h"
+#endif
+
+#ifndef AI2
+#define AI2 0
+void forward_xnor_layer(layer l, network_state state);
+#endif
+
+void swap_binary(convolutional_layer *l)
 {
-    int h = layer.h;
-    if (!layer.pad) h -= layer.size;
-    else h -= 1;
-    return h/layer.stride + 1;
-}
-
-int convolutional_out_width(convolutional_layer layer)
-{
-    int w = layer.w;
-    if (!layer.pad) w -= layer.size;
-    else w -= 1;
-    return w/layer.stride + 1;
-}
-
-image get_convolutional_image(convolutional_layer layer)
-{
-    int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.output);
-}
-
-image get_convolutional_delta(convolutional_layer layer)
-{
-    int h,w,c;
-    h = convolutional_out_height(layer);
-    w = convolutional_out_width(layer);
-    c = layer.n;
-    return float_to_image(h,w,c,layer.delta);
-}
-
-convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay)
-{
-    int i;
-    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
-    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
-
-    layer->learning_rate = learning_rate;
-    layer->momentum = momentum;
-    layer->decay = decay;
-
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    layer->n = n;
-    layer->batch = batch;
-    layer->stride = stride;
-    layer->size = size;
-    layer->pad = pad;
-
-    layer->filters = calloc(c*n*size*size, sizeof(float));
-    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-
-    layer->biases = calloc(n, sizeof(float));
-    layer->bias_updates = calloc(n, sizeof(float));
-    float scale = 1./(size*size*c);
-    scale = .01;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
-    for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
-        layer->biases[i] = .01;
-    }
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
-
-    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
-    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
-    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    float *swap = l->weights;
+    l->weights = l->binary_weights;
+    l->binary_weights = swap;
 
     #ifdef GPU
-    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
-    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-
-    layer->biases_cl = cl_make_array(layer->biases, n);
-    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-
-    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
-    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
-    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
+    swap = l->weights_gpu;
+    l->weights_gpu = l->binary_weights_gpu;
+    l->binary_weights_gpu = swap;
     #endif
-    layer->activation = activation;
-
-    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
-
-    return layer;
 }
 
-void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+void binarize_weights(float *weights, int n, int size, float *binary)
 {
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    int out_h = convolutional_out_height(*layer);
-    int out_w = convolutional_out_width(*layer);
-
-    layer->col_image = realloc(layer->col_image,
-                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
-    layer->output = realloc(layer->output,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
-    layer->delta  = realloc(layer->delta,
-                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    int i, f;
+    for(f = 0; f < n; ++f){
+        float mean = 0;
+        for(i = 0; i < size; ++i){
+            mean += fabs(weights[f*size + i]);
+        }
+        mean = mean / size;
+        for(i = 0; i < size; ++i){
+            binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean;
+        }
+    }
 }
 
-void bias_output(const convolutional_layer layer)
+void binarize_cpu(float *input, int n, float *binary)
+{
+    int i;
+    for(i = 0; i < n; ++i){
+        binary[i] = (input[i] > 0) ? 1 : -1;
+    }
+}
+
+void binarize_input(float *input, int n, int size, float *binary)
+{
+    int i, s;
+    for(s = 0; s < size; ++s){
+        float mean = 0;
+        for(i = 0; i < n; ++i){
+            mean += fabs(input[i*size + s]);
+        }
+        mean = mean / n;
+        for(i = 0; i < n; ++i){
+            binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
+        }
+    }
+}
+
+int convolutional_out_height(convolutional_layer l)
+{
+    return (l.h + 2*l.pad - l.size) / l.stride + 1;
+}
+
+int convolutional_out_width(convolutional_layer l)
+{
+    return (l.w + 2*l.pad - l.size) / l.stride + 1;
+}
+
+image get_convolutional_image(convolutional_layer l)
+{
+    int h,w,c;
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.output);
+}
+
+image get_convolutional_delta(convolutional_layer l)
+{
+    int h,w,c;
+    h = convolutional_out_height(l);
+    w = convolutional_out_width(l);
+    c = l.n;
+    return float_to_image(w,h,c,l.delta);
+}
+
+size_t get_workspace_size(layer l){
+#ifdef CUDNN
+    if(gpu_index >= 0){
+        size_t most = 0;
+        size_t s = 0;
+        cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.weightDesc,
+                l.convDesc,
+                l.dstTensorDesc,
+                l.fw_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
+                l.srcTensorDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dweightDesc,
+                l.bf_algo,
+                &s);
+        if (s > most) most = s;
+        cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
+                l.weightDesc,
+                l.ddstTensorDesc,
+                l.convDesc,
+                l.dsrcTensorDesc,
+                l.bd_algo,
+                &s);
+        if (s > most) most = s;
+        return most;
+    }
+    #endif
+    if(l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
+    return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
+}
+
+#ifdef GPU
+#ifdef CUDNN
+void cudnn_convolutional_setup(layer *l, int cudnn_preference)
+{
+
+#ifdef CUDNN_HALF
+    // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
+    //   Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
+    // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
+    const cudnnDataType_t data_type = CUDNN_DATA_HALF;
+#else
+    cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
+#endif
+
+#if(CUDNN_MAJOR >= 7)
+    // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
+    // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
+    // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
+    // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
+    // 1. Accumulation into FP32
+    // 2. Loss Scaling - required only for: activation gradients. We do not use.
+    // 3. FP32 Master Copy of Weights
+    // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
+    cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH);
+#endif
+
+    // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
+    //   on architectures with DP4A support (compute capability 6.1 and later).
+    //cudnnDataType_t data_type = CUDNN_DATA_INT8;
+
+    // backward delta
+    cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+    // forward
+    cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
+    cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+    cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+    // batch norm
+    cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
+    cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+
+    cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
+#if(CUDNN_MAJOR >= 6)
+    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);    // cudnn >= 6.0
+#else
+    cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);    // cudnn 5.1
+#endif
+    int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
+    int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
+    int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
+    if (cudnn_preference == cudnn_smallest)
+    {
+        forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
+        backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
+        backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+        printf(" CUDNN-slow ");
+    }
+
+    cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->weightDesc,
+            l->convDesc,
+            l->dstTensorDesc,
+            forward_algo,
+            0,
+            &l->fw_algo);
+    cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
+            l->weightDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dsrcTensorDesc,
+            backward_algo,
+            0,
+            &l->bd_algo);
+    cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
+            l->srcTensorDesc,
+            l->ddstTensorDesc,
+            l->convDesc,
+            l->dweightDesc,
+            backward_filter,
+            0,
+            &l->bf_algo);
+
+    if (data_type == CUDNN_DATA_HALF)
+    {
+        // HALF-16 if(data_type == CUDNN_DATA_HALF)
+        l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
+        l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
+        l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
+
+        // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
+        //l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
+        //l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
+        //l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
+
+        int fw = 0, bd = 0, bf = 0;
+        if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
+            //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
+        if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
+            //printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
+
+        if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
+            //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1  \n");
+        if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
+            //printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
+
+        if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
+            //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1   \n");
+        if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
+            //printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
+
+        //if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
+        //else if (fw == 1 && bd == 1 && bf == 1) printf("TH ");
+    }
+}
+#endif
+#endif
+
+convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
+{
+    int i;
+    convolutional_layer l = {0};
+    l.type = CONVOLUTIONAL;
+
+    l.h = h;
+    l.w = w;
+    l.c = c;
+    l.n = n;
+    l.binary = binary;
+    l.xnor = xnor;
+    l.batch = batch;
+    l.stride = stride;
+    l.size = size;
+    l.pad = padding;
+    l.batch_normalize = batch_normalize;
+
+    l.weights = calloc(c*n*size*size, sizeof(float));
+    l.weight_updates = calloc(c*n*size*size, sizeof(float));
+
+    l.biases = calloc(n, sizeof(float));
+    l.bias_updates = calloc(n, sizeof(float));
+
+    // float scale = 1./sqrt(size*size*c);
+    float scale = sqrt(2./(size*size*c));
+    for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    l.out_h = out_h;
+    l.out_w = out_w;
+    l.out_c = n;
+    l.outputs = l.out_h * l.out_w * l.out_c;
+    l.inputs = l.w * l.h * l.c;
+
+    l.output = calloc(l.batch*l.outputs, sizeof(float));
+    l.delta  = calloc(l.batch*l.outputs, sizeof(float));
+
+    l.forward = forward_convolutional_layer;
+    l.backward = backward_convolutional_layer;
+    l.update = update_convolutional_layer;
+    if(binary){
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
+        l.cweights = calloc(c*n*size*size, sizeof(char));
+        l.scales = calloc(n, sizeof(float));
+    }
+    if(xnor){
+        l.binary_weights = calloc(c*n*size*size, sizeof(float));
+        l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
+
+        int align = 8;
+        int src_align = l.out_h*l.out_w;
+        l.bit_align = src_align + (align - src_align % align);
+    }
+
+    if(batch_normalize){
+        l.scales = calloc(n, sizeof(float));
+        l.scale_updates = calloc(n, sizeof(float));
+        for(i = 0; i < n; ++i){
+            l.scales[i] = 1;
+        }
+
+        l.mean = calloc(n, sizeof(float));
+        l.variance = calloc(n, sizeof(float));
+
+        l.mean_delta = calloc(n, sizeof(float));
+        l.variance_delta = calloc(n, sizeof(float));
+
+        l.rolling_mean = calloc(n, sizeof(float));
+        l.rolling_variance = calloc(n, sizeof(float));
+        l.x = calloc(l.batch*l.outputs, sizeof(float));
+        l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
+    }
+    if(adam){
+        l.adam = 1;
+        l.m = calloc(c*n*size*size, sizeof(float));
+        l.v = calloc(c*n*size*size, sizeof(float));
+    }
+
+#ifdef GPU
+    l.forward_gpu = forward_convolutional_layer_gpu;
+    l.backward_gpu = backward_convolutional_layer_gpu;
+    l.update_gpu = update_convolutional_layer_gpu;
+
+    if(gpu_index >= 0){
+        if (adam) {
+            l.m_gpu = cuda_make_array(l.m, c*n*size*size);
+            l.v_gpu = cuda_make_array(l.v, c*n*size*size);
+        }
+
+        l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+#ifdef CUDNN_HALF
+        l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2);
+        l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2);
+#endif
+        l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
+
+        l.biases_gpu = cuda_make_array(l.biases, n);
+        l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
+
+        l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
+        l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+
+        if(binary){
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+        }
+        if(xnor){
+            l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size);
+            l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
+        }
+
+        if(batch_normalize){
+            l.mean_gpu = cuda_make_array(l.mean, n);
+            l.variance_gpu = cuda_make_array(l.variance, n);
+
+            l.rolling_mean_gpu = cuda_make_array(l.mean, n);
+            l.rolling_variance_gpu = cuda_make_array(l.variance, n);
+
+            l.mean_delta_gpu = cuda_make_array(l.mean, n);
+            l.variance_delta_gpu = cuda_make_array(l.variance, n);
+
+            l.scales_gpu = cuda_make_array(l.scales, n);
+            l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
+
+            l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+            l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
+        }
+#ifdef CUDNN
+        cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
+        cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
+        cudnnCreateTensorDescriptor(&l.normTensorDesc);
+        cudnnCreateTensorDescriptor(&l.srcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.dstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.weightDesc);
+        cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
+        cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
+        cudnnCreateFilterDescriptor(&l.dweightDesc);
+        cudnnCreateConvolutionDescriptor(&l.convDesc);
+        cudnn_convolutional_setup(&l, cudnn_fastest);
+#endif
+    }
+#endif
+    l.workspace_size = get_workspace_size(l);
+    l.activation = activation;
+
+    //fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+    l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.;
+    if (l.xnor) fprintf(stderr, "convX ");
+    else  fprintf(stderr, "conv  ");
+    fprintf(stderr, "%5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
+
+    return l;
+}
+
+void denormalize_convolutional_layer(convolutional_layer l)
+{
+    int i, j;
+    for(i = 0; i < l.n; ++i){
+        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
+        for(j = 0; j < l.c*l.size*l.size; ++j){
+            l.weights[i*l.c*l.size*l.size + j] *= scale;
+        }
+        l.biases[i] -= l.rolling_mean[i] * scale;
+        l.scales[i] = 1;
+        l.rolling_mean[i] = 0;
+        l.rolling_variance[i] = 1;
+    }
+}
+
+void test_convolutional_layer()
+{
+    convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
+    l.batch_normalize = 1;
+    float data[] = {1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        1,1,1,1,1,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        2,2,2,2,2,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3,
+        3,3,3,3,3};
+    network_state state = {0};
+    state.input = data;
+    forward_convolutional_layer(l, state);
+}
+
+void resize_convolutional_layer(convolutional_layer *l, int w, int h)
+{
+    int old_w = l->w;
+    int old_h = l->h;
+    l->w = w;
+    l->h = h;
+    int out_w = convolutional_out_width(*l);
+    int out_h = convolutional_out_height(*l);
+
+    l->out_w = out_w;
+    l->out_h = out_h;
+
+    l->outputs = l->out_h * l->out_w * l->out_c;
+    l->inputs = l->w * l->h * l->c;
+
+    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+    l->delta  = realloc(l->delta,  l->batch*l->outputs*sizeof(float));
+    if(l->batch_normalize){
+        l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
+        l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
+    }
+
+    if (l->xnor) {
+        //l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
+    }
+
+#ifdef GPU
+    if (old_w < w || old_h < h) {
+        cuda_free(l->delta_gpu);
+        cuda_free(l->output_gpu);
+
+        l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+        l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+
+        if (l->batch_normalize) {
+            cuda_free(l->x_gpu);
+            cuda_free(l->x_norm_gpu);
+
+            l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+            l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+        }
+
+        if (l->xnor) {
+            cuda_free(l->binary_input_gpu);
+            l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
+        }
+    }
+#ifdef CUDNN
+    cudnn_convolutional_setup(l, cudnn_fastest);
+#endif
+#endif
+    l->workspace_size = get_workspace_size(*l);
+
+#ifdef CUDNN
+    // check for excessive memory consumption
+    size_t free_byte;
+    size_t total_byte;
+    check_error(cudaMemGetInfo(&free_byte, &total_byte));
+    if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+        printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
+        cudnn_convolutional_setup(l, cudnn_smallest);
+        l->workspace_size = get_workspace_size(*l);
+    }
+#endif
+}
+
+void add_bias(float *output, float *biases, int batch, int n, int size)
 {
     int i,j,b;
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            for(j = 0; j < out_h*out_w; ++j){
-                layer.output[(b*layer.n + i)*out_h*out_w + j] = layer.biases[i];
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] += biases[i];
             }
         }
     }
 }
 
-void forward_convolutional_layer(const convolutional_layer layer, float *in)
+void scale_bias(float *output, float *scales, int batch, int n, int size)
 {
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int i;
-
-    bias_output(layer);
-
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = out_h*out_w;
-
-    float *a = layer.filters;
-    float *b = layer.col_image;
-    float *c = layer.output;
-
-
-    for(i = 0; i < layer.batch; ++i){
-        im2col_cpu(in, layer.c, layer.h, layer.w, 
-            layer.size, layer.stride, layer.pad, b);
-        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
-        c += n*m;
-        in += layer.c*layer.h*layer.w;
-    }
-    activate_array(layer.output, m*n*layer.batch, layer.activation);
-}
-
-void learn_bias_convolutional_layer(convolutional_layer layer)
-{
-    int i,b;
-    int size = convolutional_out_height(layer)
-        *convolutional_out_width(layer);
-    for(b = 0; b < layer.batch; ++b){
-        for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
+    int i,j,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            for(j = 0; j < size; ++j){
+                output[(b*n + i)*size + j] *= scales[i];
+            }
         }
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
+void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
+{
+    int i,b;
+    for(b = 0; b < batch; ++b){
+        for(i = 0; i < n; ++i){
+            bias_updates[i] += sum_array(delta+size*(i+b*n), size);
+        }
+    }
+}
+
+void gemm_nn_custom(int M, int N, int K, float ALPHA,
+    float *A, int lda,
+    float *B, int ldb,
+    float *C, int ldc)
+{
+    int i, j, k;
+    for (i = 0; i < M; ++i) {
+        for (k = 0; k < K; ++k) {
+            register float A_PART = ALPHA*A[i*lda + k];
+            //printf("\n weight = %f \n", A_PART);
+            for (j = 0; j < N; ++j) {
+                C[i*ldc + j] += A_PART*B[k*ldb + j];
+            }
+        }
+    }
+}
+
+
+void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) {
+    size_t i, counter;
+    counter = 0;
+    for (i = 0; i < size; i += size / filters) {
+        mean_arr[counter++] = fabs(src[i]);
+    }
+}
+
+/*
+void float_to_bit(float *src, unsigned char *dst, size_t size) {
+
+    size_t dst_size = size / 8 + 1;
+    memset(dst, 0, dst_size);
+    size_t i, dst_i, dst_shift;
+    for (i = 0; i < size; ++i) {
+        if (src[i] > 0) set_bit(dst, i);
+    }
+}
+*/
+
+void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) {
+    memset(dst, 0, size *sizeof(float));
+    size_t i,  src_i, src_shift;
+
+    for (i = 0; i < size; ++i) {
+        float mean_val = 1;
+        if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]);
+        if(get_bit(src, i)) dst[i] = mean_val;
+        else dst[i] = -mean_val;
+    }
+}
+
+void binary_align_weights(convolutional_layer *l)
+{
+    int m = l->n;
+    int k = l->size*l->size*l->c;
+    size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8;
+
+    binarize_weights(l->weights, m, k, l->binary_weights);
+
+    size_t align_weights_size = new_lda * m;
+    size_t align_bit_weights_size = align_weights_size / 8;// +1;
+    float *align_weights = calloc(align_weights_size, sizeof(float));
+    l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char));
+
+    size_t i, j;
+    // align A without transpose
+    for (i = 0; i < m; ++i) {
+        for (j = 0; j < k; ++j) {
+            align_weights[i*new_lda + j] = l->binary_weights[i*k + j];
+        }
+    }
+    float_to_bit(align_weights, l->align_bit_weights, align_weights_size);
+
+    l->mean_arr = calloc(l->n, sizeof(float));
+    get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
+
+    free(align_weights);
+}
+
+// further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
+size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align)
+{
+    size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
+    size_t t_intput_size = new_ldb * n;
+    size_t t_bit_input_size = t_intput_size / 8;// +1;
+    //float *t_input = calloc(t_intput_size, sizeof(float));
+    //char *
+    *t_bit_input = calloc(t_bit_input_size, sizeof(char));
+
+    //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
+    //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
+
+    //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
+    //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
+
+    int src_size = k * bit_align;
+    //printf("\n src_size = %d \n", src_size);
+
+    //float_to_bit(b, t_input, src_size);
+
+    // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size
+    // t_input - [bit_align, k] - [n', k]
+    // t_bit_input - [new_ldb, n] - [k', n]
+
+    //transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
+    transpose_bin(b, *t_bit_input, k, n, bit_align, new_ldb, 8);
+
+    //free(t_input);
+
+    return t_intput_size;
+}
+
+
+void forward_convolutional_layer(convolutional_layer l, network_state state)
+{
+    int out_h = convolutional_out_height(l);
+    int out_w = convolutional_out_width(l);
+    int i;
+
+    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
+
+    if(l.xnor){
+        if (!l.align_bit_weights) {
+            binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
+            //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights);
+        }
+        swap_binary(&l);
+        binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
+        state.input = l.binary_input;
+    }
+
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = out_h*out_w;
+
+    float *a = l.weights;
+    float *b = state.workspace;
+    float *c = l.output;
+
+    static int u = 0;
+    u++;
+
+    for(i = 0; i < l.batch; ++i){
+        //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
+
+        //float *t_input = NULL;
+        //if (l.xnor) {
+        //    size_t new_ldb = k + (l.lda_align - k%l.lda_align);
+        //    size_t t_intput_size = new_ldb * n;
+        //    t_input = calloc(t_intput_size, sizeof(float));
+        //    im2col_cpu_custom_transpose(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, t_input, new_ldb);
+        //}
+        //if (l.xnor && l.size == 3 && l.stride == 1 && l.pad == 1) {}
+        //else
+        // further optimizations: im2col_bin() for XNOR, and then transpose_aling_bin()
+        //im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
+
+
+        //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+        //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
+        if (l.xnor && (l.stride == 1 && l.pad == 1)) {
+            memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
+            //im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
+            im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
+
+            size_t output_size = l.outputs;
+            //float *count_output = calloc(output_size, sizeof(float));
+            //size_t bit_output_size = output_size / 8 + 1;
+            //char *bit_output = calloc(bit_output_size, sizeof(char));
+
+            size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
+            size_t bit_input_size = intput_size / 8 + 1;
+            //char *bit_input = calloc(bit_input_size, sizeof(char));
+
+            size_t weights_size = k * m; //l.size*l.size*l.c*l.n;
+            size_t bit_weights_size = weights_size / 8 + 1;
+            //char *bit_weights = calloc(bit_weights_size, sizeof(char));
+            //float *mean_arr = calloc(l.n, sizeof(float));
+
+            // test: float->bit->float
+            //get_mean_array(l.weights, weights_size, l.n, mean_arr);
+            //float_to_bit(l.weights, bit_weights, weights_size);
+            //memset(l.weights, 0, weights_size * sizeof(float));
+            //bit_to_float(bit_weights, l.weights, weights_size, l.n, mean_arr); // just for test float->bit->float
+
+            //float_to_bit(b, bit_input, intput_size);
+            //memset(b, 0, intput_size * sizeof(float));
+            //bit_to_float(bit_input, b, intput_size, 1, NULL); // just for test float->bit->float
+
+            // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
+            {
+                /*
+                size_t ldb_align = 256;// 8;
+
+                size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
+                size_t t_intput_size = new_ldb * n;
+                size_t t_bit_input_size = t_intput_size / 8;// +1;
+                float *t_input = calloc(t_intput_size, sizeof(float));
+                char *t_bit_input = calloc(t_bit_input_size, sizeof(char));
+
+                //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n);
+                //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb);
+
+
+                //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k);
+                //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb);
+
+
+                // transpose and align B
+                int i, j;
+                for (i = 0; i < n; ++i) {
+                    for (j = 0; j < k; ++j) {
+                        t_input[i*new_ldb + j] = b[j*n + i];
+                    }
+                }
+                float_to_bit(t_input, t_bit_input, t_intput_size);
+
+
+
+                if (!l.align_bit_weights)
+                {
+                    size_t align_weights_size = new_ldb * m;
+                    size_t align_bit_weights_size = align_weights_size / 8;// +1;
+                    float *align_weights = calloc(align_weights_size, sizeof(float));
+                    l.align_bit_weights = calloc(align_bit_weights_size, sizeof(char));
+
+                    // align A without transpose
+                    for (i = 0; i < m; ++i) {
+                        for (j = 0; j < k; ++j) {
+                            align_weights[i*new_ldb + j] = a[i*k + j];
+                        }
+                    }
+                    float_to_bit(align_weights, l.align_bit_weights, align_weights_size);
+
+                    l.mean_arr = calloc(l.n, sizeof(float));
+                    get_mean_array(align_weights, align_weights_size, l.n, l.mean_arr);
+
+                    free(align_weights);
+                }
+                */
+
+                /*
+                if (l.size == 3 && l.stride == 1 && l.pad == 1)
+                {
+                    //binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
+                    //printf("\n mean = %f \n", l.mean_arr[0]);
+
+                    convolution_2d(l.w, l.h, l.size, l.n, l.c, l.pad, l.stride,
+                        //l.weights, state.input, l.output, l.mean_arr);
+                        l.binary_weights, state.input, l.output, l.mean_arr);
+                }
+                else {
+                    */
+
+                    //size_t ldb_align = 256; // 256 bit for AVX2
+                    int ldb_align = l.lda_align;
+                    size_t new_ldb = k + (ldb_align - k%ldb_align);
+                    char *t_bit_input = NULL;
+                    size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align, l.bit_align);
+                    //char *t_bit_input = calloc(new_ldb * n, sizeof(char));    // for im2col_cpu_custom_transpose() only
+                    //float_to_bit(t_input, t_bit_input, new_ldb * n);    // for im2col_cpu_custom_transpose() only
+
+                    // 5x times faster than gemm()-float32
+                    // further optimizations: accelerate maxpool-layer with OpenMP/AVX
+                    gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr);
+
+                    //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr);
+
+                    //free(t_input);
+                    free(t_bit_input);
+                //}
+
+            }
+
+            // for bit_input: (k * n)
+            //if (u == 8) gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr);  // last xnor layer
+            //else gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, NULL);
+
+            //gemm_nn_custom_bin_mean(m, n, k, 1, bit_weights, k, bit_input, n, c, n, mean_arr);
+
+            //printf("\n u = %d \n", u);
+
+            //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
+
+            //int j;
+            //if (u != 8) for (j = 0; j < l.n; ++j) l.biases[j] = l.biases[j] / (mean_arr[j]*2);
+
+            //free(count_output);
+            //free(bit_input);
+            //free(bit_weights);
+            //free(mean_arr);
+        }
+        else {
+            im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b);
+
+            gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
+            // bit-count to float
+        }
+        c += n*m;
+        state.input += l.c*l.h*l.w;
+    }
+
+    if(l.batch_normalize){
+        forward_batchnorm_layer(l, state);
+    }
+    add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
+
+    //activate_array(l.output, m*n*l.batch, l.activation);
+    activate_array_cpu_custom(l.output, m*n*l.batch, l.activation);
+
+    if(l.binary || l.xnor) swap_binary(&l);
+}
+
+void backward_convolutional_layer(convolutional_layer l, network_state state)
 {
     int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
-    learn_bias_convolutional_layer(layer);
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = convolutional_out_height(l)*
+        convolutional_out_width(l);
 
-    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
+    backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
 
-    for(i = 0; i < layer.batch; ++i){
-        float *a = layer.delta + i*m*k;
-        float *b = layer.col_image;
-        float *c = layer.filter_updates;
+    if(l.batch_normalize){
+        backward_batchnorm_layer(l, state);
+    }
 
-        float *im = in+i*layer.c*layer.h*layer.w;
+    for(i = 0; i < l.batch; ++i){
+        float *a = l.delta + i*m*k;
+        float *b = state.workspace;
+        float *c = l.weight_updates;
 
-        im2col_cpu(im, layer.c, layer.h, layer.w, 
-                layer.size, layer.stride, layer.pad, b);
+        float *im = state.input+i*l.c*l.h*l.w;
+
+        im2col_cpu(im, l.c, l.h, l.w,
+                l.size, l.stride, l.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
 
-        if(delta){
-            a = layer.filters;
-            b = layer.delta + i*m*k;
-            c = layer.col_image;
+        if(state.delta){
+            a = l.weights;
+            b = l.delta + i*m*k;
+            c = state.workspace;
 
             gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
+            col2im_cpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
         }
     }
 }
 
-void update_convolutional_layer(convolutional_layer layer)
+void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
 {
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
+    int size = l.size*l.size*l.c*l.n;
+    axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
+    scal_cpu(l.n, momentum, l.bias_updates, 1);
 
-    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
-    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
-    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
+    if(l.scales){
+        axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
+        scal_cpu(l.n, momentum, l.scale_updates, 1);
+    }
+
+    axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1);
+    axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
+    scal_cpu(size, momentum, l.weight_updates, 1);
 }
 
 
-image get_convolutional_filter(convolutional_layer layer, int i)
+image get_convolutional_weight(convolutional_layer l, int i)
 {
-    int h = layer.size;
-    int w = layer.size;
-    int c = layer.c;
-    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+    int h = l.size;
+    int w = l.size;
+    int c = l.c;
+    return float_to_image(w,h,c,l.weights+i*h*w*c);
 }
 
-image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
+void rgbgr_weights(convolutional_layer l)
 {
-    image *filters = calloc(layer.n, sizeof(image));
-    int i,j,k,c;
-    if(!prev_filters){
-        for(i = 0; i < layer.n; ++i){
-            filters[i] = copy_image(get_convolutional_filter(layer, i));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_weight(l, i);
+        if (im.c == 3) {
+            rgbgr_image(im);
         }
     }
-    else{
-        image base = prev_filters[0];
-        for(i = 0; i < layer.n; ++i){
-            image filter = get_convolutional_filter(layer, i);
-            filters[i] = make_image(base.h, base.w, base.c);
-            for(j = 0; j < layer.size; ++j){
-                for(k = 0; k < layer.size; ++k){
-                    for(c = 0; c < layer.c; ++c){
-                        float weight = get_pixel(filter, j, k, c);
-                        image prev_filter = copy_image(prev_filters[c]);
-                        scale_image(prev_filter, weight);
-                        add_into_image(prev_filter, filters[i], 0,0);
-                        free_image(prev_filter);
-                    }
-                }
-            }
-        }
-    }
-    return filters;
 }
 
-image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
+void rescale_weights(convolutional_layer l, float scale, float trans)
 {
-    image *single_filters = weighted_sum_filters(layer, 0);
-    show_images(single_filters, layer.n, window);
+    int i;
+    for(i = 0; i < l.n; ++i){
+        image im = get_convolutional_weight(l, i);
+        if (im.c == 3) {
+            scale_image(im, scale);
+            float sum = sum_array(im.data, im.w*im.h*im.c);
+            l.biases[i] += sum*trans;
+        }
+    }
+}
 
-    image delta = get_convolutional_image(layer);
+image *get_weights(convolutional_layer l)
+{
+    image *weights = calloc(l.n, sizeof(image));
+    int i;
+    for(i = 0; i < l.n; ++i){
+        weights[i] = copy_image(get_convolutional_weight(l, i));
+        //normalize_image(weights[i]);
+    }
+    return weights;
+}
+
+image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
+{
+    image *single_weights = get_weights(l);
+    show_images(single_weights, l.n, window);
+
+    image delta = get_convolutional_image(l);
     image dc = collapse_image_layers(delta, 1);
     char buff[256];
     sprintf(buff, "%s: Output", window);
     //show_image(dc, buff);
     //save_image(dc, buff);
     free_image(dc);
-    return single_filters;
+    return single_weights;
 }
 
-#ifdef GPU
-
-cl_kernel get_convolutional_learn_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
-{
-    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
-
-    cl_kernel kernel = get_convolutional_learn_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.n};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-cl_kernel get_convolutional_bias_kernel()
-{
-    static int init = 0;
-    static cl_kernel kernel;
-    if(!init){
-        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
-        init = 1;
-    }
-    return kernel;
-}
-
-void bias_output_gpu(const convolutional_layer layer)
-{
-    int out_h = convolutional_out_height(layer);
-    int out_w = convolutional_out_width(layer);
-    int size = out_h*out_w;
-
-    cl_kernel kernel = get_convolutional_bias_kernel();
-    cl_command_queue queue = cl.queue;
-
-    cl_uint i = 0;
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
-    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
-    check_error(cl);
-
-    const size_t global_size[] = {layer.n*size, layer.batch};
-
-    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
-    check_error(cl);
-}
-
-//#define TIMEIT
-
-void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
-{
-    int i;
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-
-    bias_output_gpu(layer);
-
-    for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-        cl_mem a = layer.filters_cl;
-        cl_mem b = layer.col_image_cl;
-        cl_mem c = layer.output_cl;
-        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
-    }
-    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
-}
-
-void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
-{
-    int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
-    learn_bias_convolutional_layer_ongpu(layer);
-
-    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
-
-    for(i = 0; i < layer.batch; ++i){
-        cl_mem a = layer.delta_cl;
-        cl_mem b = layer.col_image_cl;
-        cl_mem c = layer.filter_updates_cl;
-
-        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
-        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
-
-        if(delta_cl){
-
-            cl_mem a = layer.filters_cl;
-            cl_mem b = layer.delta_cl;
-            cl_mem c = layer.col_image_cl;
-
-            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
-
-            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
-        }
-    }
-}
-
-void pull_convolutional_layer(convolutional_layer layer)
-{
-    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_read_array(layer.biases_cl, layer.biases, layer.n);
-    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
-    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
-}
-
-void push_convolutional_layer(convolutional_layer layer)
-{
-    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
-    cl_write_array(layer.biases_cl, layer.biases, layer.n);
-    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
-    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
-}
-
-void update_convolutional_layer_gpu(convolutional_layer layer)
-{
-    int size = layer.size*layer.size*layer.c*layer.n;
-    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
-    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
-
-    axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
-    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
-    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
-    pull_convolutional_layer(layer);
-}
-
-
-#endif
-

--
Gitblit v1.10.0