From 176d65b76583803cf10194c4c70bdc51897f2ae3 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 11 Aug 2014 19:52:07 +0000
Subject: [PATCH] Nist NIN testing multi-crop
---
src/network.c | 60 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 files changed, 59 insertions(+), 1 deletions(-)
diff --git a/src/network.c b/src/network.c
index ed927a8..292bba0 100644
--- a/src/network.c
+++ b/src/network.c
@@ -4,6 +4,7 @@
#include "data.h"
#include "utils.h"
+#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
@@ -56,6 +57,11 @@
forward_softmax_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *)net.layers[i];
+ forward_crop_layer(layer, input);
+ input = layer.output;
+ }
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer(layer, input);
@@ -85,6 +91,11 @@
forward_connected_layer(layer, input);
input = layer.output;
}
+ else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *)net.layers[i];
+ forward_crop_layer(layer, input);
+ input = layer.output;
+ }
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
@@ -266,12 +277,14 @@
int i,j;
float sum = 0;
+ int index = 0;
for(i = 0; i < n; ++i){
for(j = 0; j < batch; ++j){
- int index = rand()%d.X.rows;
+ index = rand()%d.X.rows;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
+
float err = train_network_datum(net, X, y);
sum += err;
//train_network_datum(net, X, y);
@@ -300,6 +313,7 @@
//}
}
//printf("Accuracy: %f\n",(float) correct/n);
+ //show_image(float_to_image(32,32,3,X), "Orig");
free(X);
free(y);
return (float)sum/(n*batch);
@@ -446,6 +460,10 @@
normalization_layer layer = *(normalization_layer *)net.layers[i];
return get_normalization_image(layer);
}
+ else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *)net.layers[i];
+ return get_crop_image(layer);
+ }
return make_empty_image(0,0,0);
}
@@ -464,6 +482,7 @@
image *prev = 0;
int i;
char buff[256];
+ show_image(get_network_image_layer(net, 0), "Crop");
for(i = 0; i < net.n; ++i){
sprintf(buff, "Layer %d", i);
if(net.types[i] == CONVOLUTIONAL){
@@ -484,6 +503,31 @@
return out;
}
+matrix network_predict_data_multi(network net, data test, int n)
+{
+ int i,j,b,m;
+ int k = get_network_output_size(net);
+ matrix pred = make_matrix(test.X.rows, k);
+ float *X = calloc(net.batch*test.X.rows, sizeof(float));
+ for(i = 0; i < test.X.rows; i += net.batch){
+ for(b = 0; b < net.batch; ++b){
+ if(i+b == test.X.rows) break;
+ memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
+ }
+ for(m = 0; m < n; ++m){
+ float *out = network_predict(net, X);
+ for(b = 0; b < net.batch; ++b){
+ if(i+b == test.X.rows) break;
+ for(j = 0; j < k; ++j){
+ pred.vals[i+b][j] += out[j+b*k]/n;
+ }
+ }
+ }
+ }
+ free(X);
+ return pred;
+}
+
matrix network_predict_data(network net, data test)
{
int i,j,b;
@@ -525,6 +569,12 @@
image m = get_maxpool_image(layer);
n = m.h*m.w*m.c;
}
+ else if(net.types[i] == CROP){
+ crop_layer layer = *(crop_layer *)net.layers[i];
+ output = layer.output;
+ image m = get_crop_image(layer);
+ n = m.h*m.w*m.c;
+ }
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
output = layer.output;
@@ -553,4 +603,12 @@
return acc;
}
+float network_accuracy_multi(network net, data d, int n)
+{
+ matrix guess = network_predict_data_multi(net, d, n);
+ float acc = matrix_accuracy(d.y, guess);
+ free_matrix(guess);
+ return acc;
+}
+
--
Gitblit v1.10.0