From 17c776a0eab276e9d1057cb1abf8fd7d77d54ada Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sat, 13 Oct 2018 04:26:32 +0000
Subject: [PATCH] replaced neural net with opencv :'(

---
 generate_data.py |   36 ++++++++++++++++++++++++++----------
 1 files changed, 26 insertions(+), 10 deletions(-)

diff --git a/generate_data.py b/generate_data.py
index 54f4d4d..7a2ce87 100644
--- a/generate_data.py
+++ b/generate_data.py
@@ -11,7 +11,7 @@
 import sys
 import numpy as np
 import pandas as pd
-from transform_data import ExtractedObject
+import transform_data
 
 # Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
 class Backgrounds:
@@ -66,7 +66,8 @@
 def apply_bounding_box(img, card_info, display=False):
     # List of detected objects to be fed into the neural net
     # The first object is the entire card
-    detected_object_list = [ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])]
+    detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])]
+    '''
     # Mana symbol - They are located on the top right side of the card, next to the name
     # Their position is stationary, and is right-aligned.
     has_mana_cost = isinstance(card_info['mana_cost'], str)  # Cards with no mana cost will have nan
@@ -97,7 +98,7 @@
             # Append them to the list of bounding box with the appropriate label
             symbol_name = 'mana_symbol:' + mana_cost[i]
             key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
-            detected_object_list.append(ExtractedObject(symbol_name, key_pts))
+            detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts))
 
             if display:
                 img_symbol = img[y1:y2, x1:x2]
@@ -162,7 +163,7 @@
     # Append them to the list of bounding box with the appropriate label
     symbol_name = 'set_symbol:' + card_info['set']
     key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
-    detected_object_list.append(ExtractedObject(symbol_name, key_pts))
+    detected_object_list.append(transform_data.ExtractedObject(symbol_name, key_pts))
 
     if display:
         img_symbol = img[y1:y2, x1:x2]
@@ -177,6 +178,7 @@
 
     # Image box - the large image on the top half of the card
     # TODO
+    '''
     return detected_object_list
 
 
@@ -189,12 +191,25 @@
     card_pool = pd.DataFrame()
     for set_name in fetch_data.all_set_list:
         df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
-        for _ in range(3):
-            card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
-            # Currently ignoring planeswalker cards due to their different card layout
-            is_planeswalker = 'Planeswalker' in card_info['type_line']
-            if not is_planeswalker:
-                card_pool = card_pool.append(card_info)
+        #for _ in range(3):
+        #    card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
+        #    # Currently ignoring planeswalker cards due to their different card layout
+        #    is_planeswalker = 'Planeswalker' in card_info['type_line']
+        #    if not is_planeswalker:
+        #        card_pool = card_pool.append(card_info)
+        card_pool = card_pool.append(df)
+    '''
+    print(card_pool)
+    mana_symbol_set = set()
+    for _, card_info in card_pool.iterrows():
+        has_mana_cost = isinstance(card_info['mana_cost'], str)
+        if has_mana_cost:
+            mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
+            for symbol in mana_cost:
+                mana_symbol_set.add(symbol)
+
+    print(mana_symbol_set)
+    '''
 
     for _, card_info in card_pool.iterrows():
         img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
@@ -206,6 +221,7 @@
             card_img = cv2.imread(img_name)
         detected_object_list = apply_bounding_box(card_img, card_info, display=True)
         print(detected_object_list)
+
     return
 
 

--
Gitblit v1.10.0