From 17c776a0eab276e9d1057cb1abf8fd7d77d54ada Mon Sep 17 00:00:00 2001
From: Edmond Yoo <hj3yoo@uwaterloo.ca>
Date: Sat, 13 Oct 2018 04:26:32 +0000
Subject: [PATCH] replaced neural net with opencv :'(

---
 opencv_dnn.py |  264 ++++++++++++++++++++++++++++++++++------------------
 1 files changed, 172 insertions(+), 92 deletions(-)

diff --git a/opencv_dnn.py b/opencv_dnn.py
index bf65a1f..c7ff523 100644
--- a/opencv_dnn.py
+++ b/opencv_dnn.py
@@ -3,6 +3,8 @@
 import pandas as pd
 import imagehash as ih
 import os
+import ast
+import queue
 import sys
 import math
 import random
@@ -17,33 +19,53 @@
 card_height = 440
 
 
-def calc_image_hashes(card_pool, save_to=None):
-    card_pool['art_hash'] = np.NaN
+def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
+    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
+    new_pool['card_hash'] = np.NaN
+    new_pool['art_hash'] = np.NaN
     for ind, card_info in card_pool.iterrows():
         if ind % 100 == 0:
             print(ind)
-        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
-                                                     card_info['collector_number'],
-                                                     fetch_data.get_valid_filename(card_info['name']))
-        card_img = cv2.imread(img_name)
-        if card_img is None:
-            fetch_data.fetch_card_image(card_info,
-                                        out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+
+        card_names = []
+        if card_info['layout'] in ['transform', 'double_faced_token']:
+            if isinstance(card_info['card_faces'], str):  # For some reason, dict isn't being parsed in the previous step
+                card_faces = ast.literal_eval(card_info['card_faces'])
+            else:
+                card_faces = card_info['card_faces']
+            for i in range(len(card_faces)):
+                card_names.append(card_faces[i]['name'])
+        else:  # if card_info['layout'] == 'normal':
+            card_names.append(card_info['name'])
+
+        for card_name in card_names:
+            card_info['name'] = card_name
+            img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
+                                                         card_info['collector_number'],
+                                                         fetch_data.get_valid_filename(card_info['name']))
             card_img = cv2.imread(img_name)
-        if card_img is None:
-            print('WARNING: card %s is not found!' % img_name)
-        img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
-        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
-        card_pool.at[ind, 'art_hash'] = art_hash
-        img_card = Image.fromarray(card_img)
-        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
-        card_pool.at[ind, 'card_hash'] = card_hash
-        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
-                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
-                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
+            if card_img is None:
+                fetch_data.fetch_card_image(card_info,
+                                            out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
+                card_img = cv2.imread(img_name)
+            if card_img is None:
+                print('WARNING: card %s is not found!' % img_name)
+            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
+            #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
+            #card_pool.at[ind, 'art_hash'] = art_hash
+            img_card = Image.fromarray(card_img)
+            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
+            #card_pool.at[ind, 'card_hash'] = card_hash
+            card_info['card_hash'] = card_hash
+            #print(new_pool.index.max())
+            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
+
+    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
+                         'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
+                         'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
     if save_to is not None:
-        card_pool.to_pickle(save_to)
-    return card_pool
+        new_pool.to_pickle(save_to)
+    return new_pool
 
 
 # www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
@@ -204,7 +226,7 @@
     return corrected
 
 
-def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.2):
+def find_card(img, thresh_c=5, kernel_size=(3, 3), size_thresh=5000):
     # Typical pre-processing - grayscale, blurring, thresholding
     img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
     img_blur = cv2.medianBlur(img_gray, 5)
@@ -221,19 +243,58 @@
     if len(cnts) == 0:
         print('no contours')
         return []
+    cv2.drawContours(img, cnts, -1, (0, 0, 255), 1)
+    '''
+    next = 0
+    while next != -1:
+        img_copy = img.copy()
+        print(hier[0][next])
+        cv2.drawContours(img_copy, cnts[hier[0][next][0]], -1, (0, 255, 0), 2)
+        cv2.imshow('hi', img_copy)
+        cv2.waitKey(0)
+        next = hier[0][next][0]
+    '''
     #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
     #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
     #cv2.imshow('test', img_contour)
 
-    # For each contours detected, check if they are large enough and are rectangle
+    '''
+    The hierarchy from cv2.findContours() is similar to a tree: each node has an access to the parent, the first child, 
+    their previous and next node 
+    Using (preorder) depth-first search, find the uppermost contour in the hierarchy that satisfies the condition
+    The candidate contour must be rectangle (has 4 points) and should be larger than a threshold
+    '''
+
     cnts_rect = []
+    stack = [(0, hier[0][0])]
+    while len(stack) > 0:
+        i_cnt, h = stack.pop()
+        i_next, i_prev, i_child, i_parent = h
+        if i_next != -1:
+            stack.append((i_next, hier[0][i_next]))
+        cnt = cnts[i_cnt]
+        size = cv2.contourArea(cnt)
+        peri = cv2.arcLength(cnt, True)
+        approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
+        if size >= size_thresh:
+            cv2.drawContours(img, [cnt], -1, (255, 0, 0), 1)
+            #print(size)
+            if len(approx) == 4:
+                cnts_rect.append(approx)
+        else:
+            if i_child != -1:
+                stack.append((i_child, hier[0][i_child]))
+
+
+    '''
+    # For each contours detected, check if they are large enough and are rectangle
     ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
-    for i in range(min(len(cnts), 5)):  # The card should be within top 5 largest contour
-        size = cv2.contourArea(cnts[ind_sort[i]])
+    for i in range(len(cnts)):
         peri = cv2.arcLength(cnts[ind_sort[i]], True)
         approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
-        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
+        if len(approx) == 4:
             cnts_rect.append(approx)
+    '''
 
     return cnts_rect
 
@@ -280,9 +341,11 @@
     return img_graph
 
 
-def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
-                 debug=False):
-    img_copy = img.copy()
+def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), card_size=1000,
+                 out_path=None, display=True, debug=False):
+    start_1 = time.time()
+    elapsed = []
+    '''
     # Create a 4D blob from a frame.
     blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
 
@@ -291,7 +354,9 @@
 
     # Runs the forward pass to get output of the output layers
     outs = net.forward(get_outputs_names(net))
+    elapsed.append((time.time() - start_1) * 1000)
 
+    start_2 = time.time()
     img_result = img.copy()
 
     # Remove the bounding boxes with low confidence
@@ -300,7 +365,9 @@
         class_id, confidence, box = obj
         left, top, width, height = box
         draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
-
+    elapsed.append((time.time() - start_2) * 1000)
+    '''
+    img_result = img.copy()
     # Put efficiency information. The function getPerfProfile returns the
     # overall time for inference(t) and the timings for each of the layers(in layersTimes)
     #if display:
@@ -314,54 +381,53 @@
     comparing the perceptual hashing of the image with the other cards' image from the database.
     '''
     det_cards = []
-    for i in range(len(obj_list)):
-        _, _, box = obj_list[i]
-        left, top, width, height = box
-        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
-        offset_ratio = 0.1
-        x1 = max(0, int(left - offset_ratio * width))
-        x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
-        y1 = max(0, int(top - offset_ratio * height))
-        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
-        img_snip = img[y1:y2, x1:x2]
-        cnts = find_card(img_snip)
-        if len(cnts) > 0:
-            cnt = cnts[0]  # The largest (rectangular) contour
-            pts = np.float32([p[0] for p in cnt])
-            img_warp = four_point_transform(img_snip, pts)
-            img_warp = cv2.resize(img_warp, (card_width, card_height))
-            '''
-            img_art = img_warp[47:249, 22:294]
-            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
-            art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
-            card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
-            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
-            card_name = min_cards.iloc[0]['name']
-            '''
-            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
-            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
-            card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
-            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
-            card_name = min_cards.iloc[0]['name']
-            card_set = min_cards.iloc[0]['set']
-            det_cards.append((card_name, card_set))
-            hash_diff = min_cards.iloc[0]['hash_diff']
+    start_3 = time.time()
+    cnts = find_card(img_result)
+    for i in range(len(cnts)):
+        cnt = cnts[i]
+        # ignore any contours smaller than threshold
+        elapsed.append((time.time() - start_3) * 1000)
+        start_4 = time.time()
+        pts = np.float32([p[0] for p in cnt])
+        img_warp = four_point_transform(img, pts)
+        img_warp = cv2.resize(img_warp, (card_width, card_height))
+        elapsed.append((time.time() - start_4) * 1000)
+        '''
+        img_art = img_warp[47:249, 22:294]
+        img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
+        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
+        card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
+        min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
+        card_name = min_cards.iloc[0]['name']
+        '''
+        start_5 = time.time()
+        img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
+        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten()
+        card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
+        min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
+        card_name = min_cards.iloc[0]['name']
+        card_set = min_cards.iloc[0]['set']
+        det_cards.append((card_name, card_set))
+        hash_diff = min_cards.iloc[0]['hash_diff']
+        elapsed.append((time.time() - start_5) * 1000)
 
-            # Display the result
-            if debug:
-                # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
-                cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
-                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
-            cv2.putText(img_result, card_name, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
-            if debug:
-                cv2.imshow('card#%d' % i, img_warp)
-        elif debug:
-            cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
+        # Display the result
+        if debug:
+            # cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
+            cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
+                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
+        cv2.drawContours(img_result, [cnt], -1, (0, 255, 0), 1)
+        cv2.putText(img_result, card_name, (pts[0][0], pts[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
+        if debug:
+            cv2.imshow('card#%d' % i, img_warp)
+        #if debug:
+        #    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
 
     if out_path is not None:
         cv2.imwrite(out_path, img_result.astype(np.uint8))
-
-    return obj_list, det_cards, img_result
+    elapsed = [(time.time() - start_1) * 1000] + elapsed
+    #print(', '.join(['%.2f' % t for t in elapsed]))
+    return det_cards, img_result
 
 
 def detect_video(net, classes, capture, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None,
@@ -384,10 +450,11 @@
                 cv2.waitKey(0)
                 break
             # Use the YOLO model to identify each cards annonymously
-            obj_list, det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
-                                                           thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
-                                                           display=display, debug=debug)
-
+            start_yolo = time.time()
+            det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
+                                                 thresh_nms=thresh_nms, in_dim=in_dim, out_path=None, display=display,
+                                                 debug=debug)
+            elapsed_yolo = (time.time() - start_yolo) * 1000
             # If the card was already detected in the previous frame, append 1 to the list
             # If the card previously detected was not found in this trame, append 0 to the list
             # If the card wasn't previously detected, make a new list and add 1 to it
@@ -413,21 +480,24 @@
                     exist_cards[key] = [1]
             for key in gone:
                 exist_cards.pop(key)
+            start_graph = time.time()
             img_graph = draw_card_graph(exist_cards, card_pool, f_len)
+            elapsed_graph = (time.time() - start_graph) * 1000
+            #if debug:
+            #    max_num_obj = max(max_num_obj, len(obj_list))
+            #    for i in range(len(obj_list), max_num_obj):
+            #        cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
 
-            if debug:
-                max_num_obj = max(max_num_obj, len(obj_list))
-                for i in range(len(obj_list), max_num_obj):
-                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
-
+            start_display = time.time()
             img_save = np.zeros((height, width, 3), dtype=np.uint8)
             img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
             img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
             if display:
                 cv2.imshow('result', img_save)
+            elapsed_display = (time.time() - start_display) * 1000
 
             elapsed_ms = (time.time() - start_time) * 1000
-            print('Elapsed time: %.2f ms' % elapsed_ms)
+            print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display))
             if out_path is not None:
                 vid_writer.write(img_save.astype(np.uint8))
             cv2.waitKey(1)
@@ -469,18 +539,28 @@
         df = fetch_data.load_all_cards_text(csv_name)
         df_list.append(df)
         #print(df)
-    card_pool = pd.concat(df_list)
+    card_pool = pd.concat(df_list, sort=True)
     card_pool.reset_index(drop=True, inplace=True)
     card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
-    card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
+    for hash_size in [8, 16, 32, 64]:
+        for highfreq_factor in [4, 8, 16, 32]:
+            pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor)
+            if not os.path.exists(pck_name):
+                print(pck_name)
+                calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor)
     '''
-    # csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
-    # card_pool = fetch_data.load_all_cards_text(csv_name)
-    # card_pool = calc_image_hashes(card_pool)
-    card_pool = pd.read_pickle('card_pool.pck')
-    card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
+    #csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
+    #card_pool = fetch_data.load_all_cards_text(csv_name)
+    #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
+    #return
+    card_pool = pd.read_pickle('card_pool_32_4.pck')
+    #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
     card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
 
+    # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
+    # significantly increases speed for subtracting hashes in the future.
+    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
+
     thresh_conf = 0.01
     thresh_nms = 0.8
 

--
Gitblit v1.10.0