From 198b4287f722a7dc7894b2ba5e96312ee6d81e35 Mon Sep 17 00:00:00 2001 From: Alexey <AlexeyAB@users.noreply.github.com> Date: Sun, 08 Apr 2018 21:54:41 +0000 Subject: [PATCH] Update Readme.md --- README.md | 4 +++- 1 files changed, 3 insertions(+), 1 deletions(-) diff --git a/README.md b/README.md index 55c36a5..0e81cfd 100644 --- a/README.md +++ b/README.md @@ -167,7 +167,7 @@ `C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include` - (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg -- add to project all .c & .cu files from `\src` +- add to project all `.c`, `.cpp` & `.cu` files from `\src` - (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here: `C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)` @@ -216,6 +216,8 @@ More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc + **Note:** If during training you see `nan` values in some lines then training goes well, but if `nan` are in all lines then training goes wrong. + ## How to train with multi-GPU: 1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` -- Gitblit v1.10.0