From 1b5afb45838e603fa6780762eb8cc59246dc2d81 Mon Sep 17 00:00:00 2001
From: IlyaOvodov <b@ovdv.ru>
Date: Tue, 08 May 2018 11:09:35 +0000
Subject: [PATCH] Output improvements for detector results: When printing detector results, output was done in random order, obfuscating results for interpreting. Now: 1. Text output includes coordinates of rects in (left,right,top,bottom in pixels) along with label and score 2. Text output is sorted by rect lefts to simplify finding appropriate rects on image 3. If several class probs are > thresh for some detection, the most probable is written first and coordinates for others are not repeated 4. Rects are imprinted in image in order by their best class prob, so most probable rects are always on top and not overlayed by less probable ones 5. Most probable label for rect is always written first Also: 6. Message about low GPU memory include required amount

---
 src/blas_kernels.cu |   74 ++++++++++++++++++++++++++++++-------
 1 files changed, 60 insertions(+), 14 deletions(-)

diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index 8e1cf19..1edbbbd 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -145,8 +145,8 @@
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     
-    x[index] = x[index] - (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps));
-    //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
+    x[index] = x[index] - (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
+    //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
 }
 
 extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
@@ -155,13 +155,27 @@
     check_error(cudaPeekAtLastError());
 }
 
+extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
+{
+	scal_ongpu(n, B1, m, 1);
+	scal_ongpu(n, B2, v, 1);
+	axpy_ongpu(n, -decay*batch, w, 1, d, 1);
+
+	axpy_ongpu(n, (1 - B1), d, 1, m, 1);
+	mul_ongpu(n, d, 1, d, 1);
+	axpy_ongpu(n, (1 - B2), d, 1, v, 1);
+
+	adam_gpu(n, w, m, v, B1, B2, rate, eps, t);
+	fill_ongpu(n, 0, d, 1);
+}
+
 __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
 {
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
+    x[index] = (x[index] - mean[f])/(sqrtf(variance[f]) + .000001f);
 }
 
 __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -170,7 +184,7 @@
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+    delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
 }
 
 extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -192,7 +206,7 @@
             variance_delta[i] += delta[index]*(x[index] - mean[i]);
         }
     }
-    variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
+    variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.));
 }
 
 __global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -230,7 +244,7 @@
         for(i = 0; i < threads; ++i){
             mean_delta[filter] += local[i];
         }
-        mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
+        mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f));
     }
 }
 
@@ -259,7 +273,7 @@
         for(i = 0; i < threads; ++i){
             variance_delta[filter] += local[i];
         }
-        variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
+        variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.));
     }
 }
 
@@ -276,7 +290,7 @@
             mean_delta[i] += delta[index];
         }
     }
-    mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
+    mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f));
 }
 
 extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -299,7 +313,7 @@
 
 __global__ void  mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
 {
-    float scale = 1./(batch * spatial);
+    float scale = 1.F/(batch * spatial);
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
     int j,k;
@@ -315,7 +329,7 @@
 
 __global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
 {
-    float scale = 1./(batch * spatial - 1);
+    float scale = 1.F/(batch * spatial - 1);
     int j,k;
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
@@ -323,7 +337,7 @@
     for(j = 0; j < batch; ++j){
         for(k = 0; k < spatial; ++k){
             int index = j*filters*spatial + i*spatial + k;
-            variance[i] += pow((x[index] - mean[i]), 2);
+            variance[i] += powf((x[index] - mean[i]), 2);
         }
     }
     variance[i] *= scale;
@@ -370,7 +384,7 @@
 __global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
+    if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA);
 }
 
 __global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
@@ -474,7 +488,7 @@
         for(i = 0; i < spatial; i += threads){
             int index = j*spatial*filters + filter*spatial + i + id;
 
-            local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
+            local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0;
         }
     }
 	__syncthreads();
@@ -646,7 +660,7 @@
     if(sample < 1) sample = 1;
 
     int size = batch * minw * minh * minc;
-    shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
+    shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
     check_error(cudaPeekAtLastError());
 }
 
@@ -769,3 +783,35 @@
     softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
     check_error(cudaPeekAtLastError());
 }
+
+
+__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+	size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+	if (i >= N) return;
+	int out_index = i;
+	int out_w = i % (w*stride);
+	i = i / (w*stride);
+	int out_h = i % (h*stride);
+	i = i / (h*stride);
+	int out_c = i%c;
+	i = i / c;
+	int b = i%batch;
+
+	int in_w = out_w / stride;
+	int in_h = out_h / stride;
+	int in_c = out_c;
+
+	int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w;
+
+
+	if (forward) out[out_index] += scale * x[in_index];
+	else atomicAdd(x + in_index, scale * out[out_index]);
+}
+
+extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+	size_t size = w*h*c*batch*stride*stride;
+	upsample_kernel << <cuda_gridsize(size), BLOCK >> >(size, in, w, h, c, batch, stride, forward, scale, out);
+	check_error(cudaPeekAtLastError());
+}
\ No newline at end of file

--
Gitblit v1.10.0