From 1b5afb45838e603fa6780762eb8cc59246dc2d81 Mon Sep 17 00:00:00 2001
From: IlyaOvodov <b@ovdv.ru>
Date: Tue, 08 May 2018 11:09:35 +0000
Subject: [PATCH] Output improvements for detector results: When printing detector results, output was done in random order, obfuscating results for interpreting. Now: 1. Text output includes coordinates of rects in (left,right,top,bottom in pixels) along with label and score 2. Text output is sorted by rect lefts to simplify finding appropriate rects on image 3. If several class probs are > thresh for some detection, the most probable is written first and coordinates for others are not repeated 4. Rects are imprinted in image in order by their best class prob, so most probable rects are always on top and not overlayed by less probable ones 5. Most probable label for rect is always written first Also: 6. Message about low GPU memory include required amount

---
 src/region_layer.c |  399 ++++++++++++++++++++++++++++++++++++++++++++++----------
 1 files changed, 323 insertions(+), 76 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 2702636..62c8b34 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -9,7 +9,9 @@
 #include <string.h>
 #include <stdlib.h>
 
-region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
+#define DOABS 1
+
+region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords, int max_boxes)
 {
     region_layer l = {0};
     l.type = REGION;
@@ -25,7 +27,8 @@
     l.bias_updates = calloc(n*2, sizeof(float));
     l.outputs = h*w*n*(classes + coords + 1);
     l.inputs = l.outputs;
-    l.truths = 30*(5);
+	l.max_boxes = max_boxes;
+    l.truths = max_boxes*(5);
     l.delta = calloc(batch*l.outputs, sizeof(float));
     l.output = calloc(batch*l.outputs, sizeof(float));
     int i;
@@ -42,25 +45,47 @@
     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
 #endif
 
-    fprintf(stderr, "Region Layer\n");
+    fprintf(stderr, "detection\n");
     srand(0);
 
     return l;
 }
 
-#define LOG 1
+void resize_region_layer(layer *l, int w, int h)
+{
+	int old_w = l->w;
+	int old_h = l->h;
+    l->w = w;
+    l->h = h;
+
+    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
+    l->inputs = l->outputs;
+
+    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
+    l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
+
+#ifdef GPU
+	if (old_w < w || old_h < h) {
+		cuda_free(l->delta_gpu);
+		cuda_free(l->output_gpu);
+
+		l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
+		l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+	}
+#endif
+}
 
 box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
 {
     box b;
-    b.x = (i + .5)/w + x[index + 0] * biases[2*n];
-    b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
-    if(LOG){
-        b.x = (i + logistic_activate(x[index + 0])) / w;
-        b.y = (j + logistic_activate(x[index + 1])) / h;
-    }
+    b.x = (i + logistic_activate(x[index + 0])) / w;
+    b.y = (j + logistic_activate(x[index + 1])) / h;
     b.w = exp(x[index + 2]) * biases[2*n];
     b.h = exp(x[index + 3]) * biases[2*n+1];
+    if(DOABS){
+        b.w = exp(x[index + 2]) * biases[2*n]   / w;
+        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
+    }
     return b;
 }
 
@@ -69,26 +94,70 @@
     box pred = get_region_box(x, biases, n, index, i, j, w, h);
     float iou = box_iou(pred, truth);
 
-    float tx = (truth.x - (i + .5)/w) / biases[2*n];
-    float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
-    if(LOG){
-        tx = (truth.x*w - i);
-        ty = (truth.y*h - j);
-    }
+    float tx = (truth.x*w - i);
+    float ty = (truth.y*h - j);
     float tw = log(truth.w / biases[2*n]);
     float th = log(truth.h / biases[2*n + 1]);
-
-    delta[index + 0] = scale * (tx - x[index + 0]);
-    delta[index + 1] = scale * (ty - x[index + 1]);
-    if(LOG){
-        delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
-        delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
+    if(DOABS){
+        tw = log(truth.w*w / biases[2*n]);
+        th = log(truth.h*h / biases[2*n + 1]);
     }
+
+    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
+    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
     delta[index + 2] = scale * (tw - x[index + 2]);
     delta[index + 3] = scale * (th - x[index + 3]);
     return iou;
 }
 
+void delta_region_class(float *output, float *delta, int index, int class_id, int classes, tree *hier, float scale, float *avg_cat, int focal_loss)
+{
+    int i, n;
+    if(hier){
+        float pred = 1;
+        while(class_id >= 0){
+            pred *= output[index + class_id];
+            int g = hier->group[class_id];
+            int offset = hier->group_offset[g];
+            for(i = 0; i < hier->group_size[g]; ++i){
+                delta[index + offset + i] = scale * (0 - output[index + offset + i]);
+            }
+            delta[index + class_id] = scale * (1 - output[index + class_id]);
+
+            class_id = hier->parent[class_id];
+        }
+        *avg_cat += pred;
+    } else {		
+		// Focal loss
+		if (focal_loss) {
+			// Focal Loss
+			float alpha = 0.5;	// 0.25 or 0.5
+			//float gamma = 2;	// hardcoded in many places of the grad-formula	
+
+			int ti = index + class_id;
+			float pt = output[ti] + 0.000000000000001F;
+			// http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
+			float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);	// http://blog.csdn.net/linmingan/article/details/77885832	
+			//float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);	// https://github.com/unsky/focal-loss
+
+			for (n = 0; n < classes; ++n) {
+				delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+
+				delta[index + n] *= alpha*grad;
+
+				if (n == class_id) *avg_cat += output[index + n];
+			}
+		}
+		else {
+			// default
+			for (n = 0; n < classes; ++n) {
+				delta[index + n] = scale * (((n == class_id) ? 1 : 0) - output[index + n]);
+				if (n == class_id) *avg_cat += output[index + n];
+			}
+		}
+    }
+}
+
 float logit(float x)
 {
     return log(x/(1.-x));
@@ -99,24 +168,47 @@
     return (x != x);
 }
 
+static int entry_index(layer l, int batch, int location, int entry)
+{
+	int n = location / (l.w*l.h);
+	int loc = location % (l.w*l.h);
+	return batch*l.outputs + n*l.w*l.h*(l.coords + l.classes + 1) + entry*l.w*l.h + loc;
+}
+
 void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
 void forward_region_layer(const region_layer l, network_state state)
 {
     int i,j,b,t,n;
     int size = l.coords + l.classes + 1;
     memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
-    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    #ifndef GPU
+    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
+    #endif
     for (b = 0; b < l.batch; ++b){
         for(i = 0; i < l.h*l.w*l.n; ++i){
             int index = size*i + b*l.outputs;
             l.output[index + 4] = logistic_activate(l.output[index + 4]);
-            if(l.softmax_tree){
+        }
+    }
+
+
+#ifndef GPU
+    if (l.softmax_tree){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
                 softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
-            } else if(l.softmax){
-                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
+            }
+        }
+    } else if (l.softmax){
+        for (b = 0; b < l.batch; ++b){
+            for(i = 0; i < l.h*l.w*l.n; ++i){
+                int index = size*i + b*l.outputs;
+                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
             }
         }
     }
+#endif
     if(!state.train) return;
     memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
     float avg_iou = 0;
@@ -125,23 +217,64 @@
     float avg_obj = 0;
     float avg_anyobj = 0;
     int count = 0;
+    int class_count = 0;
     *(l.cost) = 0;
     for (b = 0; b < l.batch; ++b) {
+        if(l.softmax_tree){
+            int onlyclass_id = 0;
+            for(t = 0; t < l.max_boxes; ++t){
+                box truth = float_to_box(state.truth + t*5 + b*l.truths);
+                if(!truth.x) break;
+                int class_id = state.truth[t*5 + b*l.truths + 4];
+                float maxp = 0;
+                int maxi = 0;
+                if(truth.x > 100000 && truth.y > 100000){
+                    for(n = 0; n < l.n*l.w*l.h; ++n){
+                        int index = size*n + b*l.outputs + 5;
+                        float scale =  l.output[index-1];
+                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id);
+                        if(p > maxp){
+                            maxp = p;
+                            maxi = n;
+                        }
+                    }
+                    int index = size*maxi + b*l.outputs + 5;
+                    delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
+                    ++class_count;
+                    onlyclass_id = 1;
+                    break;
+                }
+            }
+            if(onlyclass_id) continue;
+        }
         for (j = 0; j < l.h; ++j) {
             for (i = 0; i < l.w; ++i) {
                 for (n = 0; n < l.n; ++n) {
                     int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                     box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
                     float best_iou = 0;
-                    for(t = 0; t < 30; ++t){
+                    int best_class_id = -1;
+                    for(t = 0; t < l.max_boxes; ++t){
                         box truth = float_to_box(state.truth + t*5 + b*l.truths);
                         if(!truth.x) break;
                         float iou = box_iou(pred, truth);
-                        if (iou > best_iou) best_iou = iou;
+                        if (iou > best_iou) {
+                            best_class_id = state.truth[t*5 + b*l.truths + 4];
+                            best_iou = iou;
+                        }
                     }
                     avg_anyobj += l.output[index + 4];
                     l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
-                    if(best_iou > l.thresh) l.delta[index + 4] = 0;
+                    if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
+                    else{
+                        if (best_iou > l.thresh) {
+                            l.delta[index + 4] = 0;
+                            if(l.classfix > 0){
+                                delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss);
+                                ++class_count;
+                            }
+                        }
+                    }
 
                     if(*(state.net.seen) < 12800){
                         box truth = {0};
@@ -149,16 +282,16 @@
                         truth.y = (j + .5)/l.h;
                         truth.w = l.biases[2*n];
                         truth.h = l.biases[2*n+1];
+                        if(DOABS){
+                            truth.w = l.biases[2*n]/l.w;
+                            truth.h = l.biases[2*n+1]/l.h;
+                        }
                         delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
-                        //l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
-                        //l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
-                        //l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
-                        //l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
                     }
                 }
             }
         }
-        for(t = 0; t < 30; ++t){
+        for(t = 0; t < l.max_boxes; ++t){
             box truth = float_to_box(state.truth + t*5 + b*l.truths);
 
             if(!truth.x) break;
@@ -178,6 +311,10 @@
                 if(l.bias_match){
                     pred.w = l.biases[2*n];
                     pred.h = l.biases[2*n+1];
+                    if(DOABS){
+                        pred.w = l.biases[2*n]/l.w;
+                        pred.h = l.biases[2*n+1]/l.h;
+                    }
                 }
                 //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                 pred.x = 0;
@@ -203,37 +340,19 @@
             }
 
 
-            int class = state.truth[t*5 + b*l.truths + 4];
-            if (l.map) class = l.map[class];
-            if(l.softmax_tree){
-                float pred = 1;
-                while(class >= 0){
-                    pred *= l.output[best_index + 5 + class];
-                    int g = l.softmax_tree->group[class];
-                    int i;
-                    int offset = l.softmax_tree->group_offset[g];
-                    for(i = 0; i < l.softmax_tree->group_size[g]; ++i){
-                        int index = best_index + 5 + offset + i;
-                        l.delta[index] = l.class_scale * (0 - l.output[index]);
-                    }
-                    l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]);
-
-                    class = l.softmax_tree->parent[class];
-                }
-                avg_cat += pred;
-            } else {
-                for(n = 0; n < l.classes; ++n){
-                    l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
-                    if(n == class) avg_cat += l.output[best_index + 5 + n];
-                }
-            }
+            int class_id = state.truth[t*5 + b*l.truths + 4];
+            if (l.map) class_id = l.map[class_id];
+            delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
             ++count;
+            ++class_count;
         }
     }
     //printf("\n");
-    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    #ifndef GPU
+    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
+    #endif
     *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
 }
 
 void backward_region_layer(const region_layer l, network_state state)
@@ -241,11 +360,10 @@
     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
-void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
 {
     int i,j,n;
     float *predictions = l.output;
-    //int per_cell = 5*num+classes;
     for (i = 0; i < l.w*l.h; ++i){
         int row = i / l.w;
         int col = i % l.w;
@@ -253,6 +371,7 @@
             int index = i*l.n + n;
             int p_index = index * (l.classes + 5) + 4;
             float scale = predictions[p_index];
+            if(l.classfix == -1 && scale < .5) scale = 0;
             int box_index = index * (l.classes + 5);
             boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
             boxes[index].x *= w;
@@ -262,19 +381,26 @@
 
             int class_index = index * (l.classes + 5) + 5;
             if(l.softmax_tree){
-                
+
                 hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
                 int found = 0;
-                for(j = l.classes - 1; j >= 0; --j){
-                    if(!found && predictions[class_index + j] > .5){
-                        found = 1;
-                    } else {
-                        predictions[class_index + j] = 0;
+                if(map){
+                    for(j = 0; j < 200; ++j){
+                        float prob = scale*predictions[class_index+map[j]];
+                        probs[index][j] = (prob > thresh) ? prob : 0;
                     }
-                    float prob = predictions[class_index+j];
-                    probs[index][j] = (scale > thresh) ? prob : 0;
+                } else {
+                    for(j = l.classes - 1; j >= 0; --j){
+                        if(!found && predictions[class_index + j] > .5){
+                            found = 1;
+                        } else {
+                            predictions[class_index + j] = 0;
+                        }
+                        float prob = predictions[class_index+j];
+                        probs[index][j] = (scale > thresh) ? prob : 0;
+                    }
                 }
-            }else{
+            } else {
                 for(j = 0; j < l.classes; ++j){
                     float prob = scale*predictions[class_index+j];
                     probs[index][j] = (prob > thresh) ? prob : 0;
@@ -297,6 +423,18 @@
        return;
        }
      */
+    flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
+    if(l.softmax_tree){
+        int i;
+        int count = 5;
+        for (i = 0; i < l.softmax_tree->groups; ++i) {
+            int group_size = l.softmax_tree->group_size[i];
+            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
+            count += group_size;
+        }
+    }else if (l.softmax){
+        softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
+    }
 
     float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
@@ -305,22 +443,131 @@
         truth_cpu = calloc(num_truth, sizeof(float));
         cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
-    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
+	//cudaStreamSynchronize(get_cuda_stream());
     network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
     cpu_state.input = in_cpu;
     forward_region_layer(l, cpu_state);
-    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
     free(cpu_state.input);
+    if(!state.train) return;
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+	//cudaStreamSynchronize(get_cuda_stream());
     if(cpu_state.truth) free(cpu_state.truth);
 }
 
 void backward_region_layer_gpu(region_layer l, network_state state)
 {
-    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
-    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
+    flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
 }
 #endif
 
+
+void correct_region_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative)
+{
+	int i;
+	int new_w = 0;
+	int new_h = 0;
+	if (((float)netw / w) < ((float)neth / h)) {
+		new_w = netw;
+		new_h = (h * netw) / w;
+	}
+	else {
+		new_h = neth;
+		new_w = (w * neth) / h;
+	}
+	for (i = 0; i < n; ++i) {
+		box b = dets[i].bbox;
+		b.x = (b.x - (netw - new_w) / 2. / netw) / ((float)new_w / netw);
+		b.y = (b.y - (neth - new_h) / 2. / neth) / ((float)new_h / neth);
+		b.w *= (float)netw / new_w;
+		b.h *= (float)neth / new_h;
+		if (!relative) {
+			b.x *= w;
+			b.w *= w;
+			b.y *= h;
+			b.h *= h;
+		}
+		dets[i].bbox = b;
+	}
+}
+
+
+void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets)
+{
+	int i, j, n, z;
+	float *predictions = l.output;
+	if (l.batch == 2) {
+		float *flip = l.output + l.outputs;
+		for (j = 0; j < l.h; ++j) {
+			for (i = 0; i < l.w / 2; ++i) {
+				for (n = 0; n < l.n; ++n) {
+					for (z = 0; z < l.classes + l.coords + 1; ++z) {
+						int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+						int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+						float swap = flip[i1];
+						flip[i1] = flip[i2];
+						flip[i2] = swap;
+						if (z == 0) {
+							flip[i1] = -flip[i1];
+							flip[i2] = -flip[i2];
+						}
+					}
+				}
+			}
+		}
+		for (i = 0; i < l.outputs; ++i) {
+			l.output[i] = (l.output[i] + flip[i]) / 2.;
+		}
+	}
+	for (i = 0; i < l.w*l.h; ++i) {
+		int row = i / l.w;
+		int col = i % l.w;
+		for (n = 0; n < l.n; ++n) {
+			int index = n*l.w*l.h + i;
+			for (j = 0; j < l.classes; ++j) {
+				dets[index].prob[j] = 0;
+			}
+			int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords);
+			int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
+			int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4);
+			float scale = l.background ? 1 : predictions[obj_index];
+			dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h);
+			dets[index].objectness = scale > thresh ? scale : 0;
+			if (dets[index].mask) {
+				for (j = 0; j < l.coords - 4; ++j) {
+					dets[index].mask[j] = l.output[mask_index + j*l.w*l.h];
+				}
+			}
+
+			int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background);
+			if (l.softmax_tree) {
+
+				hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h);
+				if (map) {
+					for (j = 0; j < 200; ++j) {
+						int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]);
+						float prob = scale*predictions[class_index];
+						dets[index].prob[j] = (prob > thresh) ? prob : 0;
+					}
+				}
+				else {
+					int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h);
+					dets[index].prob[j] = (scale > thresh) ? scale : 0;
+				}
+			}
+			else {
+				if (dets[index].objectness) {
+					for (j = 0; j < l.classes; ++j) {
+						int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j);
+						float prob = scale*predictions[class_index];
+						dets[index].prob[j] = (prob > thresh) ? prob : 0;
+					}
+				}
+			}
+		}
+	}
+	correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative);
+}

--
Gitblit v1.10.0