From 1c39aeca008ced62dae8245f8d6f9963f4c97b47 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 12 Apr 2018 11:12:38 +0000
Subject: [PATCH] Try to fix

---
 src/network.c |  169 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 168 insertions(+), 1 deletions(-)

diff --git a/src/network.c b/src/network.c
index 10d1ead..8c713fb 100644
--- a/src/network.c
+++ b/src/network.c
@@ -27,6 +27,7 @@
 #include "dropout_layer.h"
 #include "route_layer.h"
 #include "shortcut_layer.h"
+#include "yolo_layer.h"
 
 int get_current_batch(network net)
 {
@@ -140,6 +141,11 @@
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
+
+	net.input16_gpu = calloc(1, sizeof(float *));
+	net.output16_gpu = calloc(1, sizeof(float *));
+	net.max_input16_size = calloc(1, sizeof(size_t));
+	net.max_output16_size = calloc(1, sizeof(size_t));
     #endif
     return net;
 }
@@ -316,6 +322,8 @@
         net->layers[i].batch = b;
 #ifdef CUDNN
         if(net->layers[i].type == CONVOLUTIONAL){
+			cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+			/*
 			layer *l = net->layers + i;
             cudnn_convolutional_setup(l, cudnn_fastest);
 			// check for excessive memory consumption 
@@ -327,6 +335,7 @@
 				cudnn_convolutional_setup(l, cudnn_smallest);
 				l->workspace_size = get_workspace_size(*l);
 			}
+			*/
         }
 #endif
     }
@@ -356,7 +365,7 @@
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
-		printf(" %d: layer = %d,", i, l.type);
+		//printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
         }else if(l.type == CROP){
@@ -365,8 +374,14 @@
             resize_maxpool_layer(&l, w, h);
         }else if(l.type == REGION){
             resize_region_layer(&l, w, h);
+		}else if (l.type == YOLO) {
+			resize_yolo_layer(&l, w, h);
         }else if(l.type == ROUTE){
             resize_route_layer(&l, net);
+		}else if (l.type == SHORTCUT) {
+			resize_shortcut_layer(&l, w, h);
+		}else if (l.type == UPSAMPLE) {
+			resize_upsample_layer(&l, w, h);
         }else if(l.type == REORG){
             resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
@@ -489,6 +504,112 @@
     return out;
 }
 
+int num_detections(network *net, float thresh)
+{
+	int i;
+	int s = 0;
+	for (i = 0; i < net->n; ++i) {
+		layer l = net->layers[i];
+		if (l.type == YOLO) {
+			s += yolo_num_detections(l, thresh);
+		}
+		if (l.type == DETECTION || l.type == REGION) {
+			s += l.w*l.h*l.n;
+		}
+	}
+	return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+	layer l = net->layers[net->n - 1];
+	int i;
+	int nboxes = num_detections(net, thresh);
+	if (num) *num = nboxes;
+	detection *dets = calloc(nboxes, sizeof(detection));
+	for (i = 0; i < nboxes; ++i) {
+		dets[i].prob = calloc(l.classes, sizeof(float));
+		if (l.coords > 4) {
+			dets[i].mask = calloc(l.coords - 4, sizeof(float));
+		}
+	}
+	return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	int i, j;
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+	get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+	for (j = 0; j < l.w*l.h*l.n; ++j) {
+		dets[j].classes = l.classes;
+		dets[j].bbox = boxes[j];
+		dets[j].objectness = 1;
+		for (i = 0; i < l.classes; ++i) {
+			dets[j].prob[i] = probs[j][i];
+		}
+	}
+
+	free(boxes);
+	free_ptrs((void **)probs, l.w*l.h*l.n);
+
+	//correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
+	correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+	int j;
+	for (j = 0; j < net->n; ++j) {
+		layer l = net->layers[j];
+		if (l.type == YOLO) {
+			int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+			dets += count;
+		}
+		if (l.type == REGION) {
+			custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+			//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+			dets += l.w*l.h*l.n;
+		}
+		if (l.type == DETECTION) {
+			get_detection_detections(l, w, h, thresh, dets);
+			dets += l.w*l.h*l.n;
+		}
+	}
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+	detection *dets = make_network_boxes(net, thresh, num);
+	fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+	return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+	int i;
+	for (i = 0; i < n; ++i) {
+		free(dets[i].prob);
+		if (dets[i].mask) free(dets[i].mask);
+	}
+	free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+	image imr = letterbox_image(im, net->w, net->h);
+	set_batch_network(net, 1);
+	float *p = network_predict(*net, imr.data);
+	free_image(imr);
+	return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
 matrix network_predict_data_multi(network net, data test, int n)
 {
     int i,j,b,m;
@@ -619,7 +740,53 @@
 	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
 	if (net.input_gpu) free(net.input_gpu);
 	if (net.truth_gpu) free(net.truth_gpu);
+
+	if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+	if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+	if (net.input16_gpu) free(net.input16_gpu);
+	if (net.output16_gpu) free(net.output16_gpu);
+	if (net.max_input16_size) free(net.max_input16_size);
+	if (net.max_output16_size) free(net.max_output16_size);
 #else
 	free(net.workspace);
 #endif
 }
+
+
+void fuse_conv_batchnorm(network net)
+{
+	int j;
+	for (j = 0; j < net.n; ++j) {
+		layer *l = &net.layers[j];
+
+		if (l->type == CONVOLUTIONAL) {
+			//printf(" Merges Convolutional-%d and batch_norm \n", j);
+
+			if (l->batch_normalize) {
+				int f;
+				for (f = 0; f < l->n; ++f)
+				{
+					l->biases[f] = l->biases[f] - l->scales[f] * l->rolling_mean[f] / (sqrtf(l->rolling_variance[f]) + .000001f);
+
+					const size_t filter_size = l->size*l->size*l->c;
+					int i;
+					for (i = 0; i < filter_size; ++i) {
+						int w_index = f*filter_size + i;
+
+						l->weights[w_index] = l->weights[w_index] * l->scales[f] / (sqrtf(l->rolling_variance[f]) + .000001f);
+					}
+				}
+
+				l->batch_normalize = 0;
+#ifdef GPU
+				if (gpu_index >= 0) {
+					push_convolutional_layer(*l);
+				}
+#endif
+			}
+		}
+		else {
+			//printf(" Fusion skip layer type: %d \n", l->type);
+		}
+	}
+}

--
Gitblit v1.10.0