From 1e9d1fcedf1a361bcdb384f15b5b14bdb526576d Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sat, 30 Jun 2018 20:12:25 +0000
Subject: [PATCH] Fixed arch=compute_53,code=[sm_53,compute_53] for Jetson TX1

---
 src/coco.c |  482 ++++++++++++++++++-----------------------------------
 1 files changed, 167 insertions(+), 315 deletions(-)

diff --git a/src/coco.c b/src/coco.c
index 234f342..1913a47 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -6,6 +6,7 @@
 #include "utils.h"
 #include "parser.h"
 #include "box.h"
+#include "demo.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -15,44 +16,14 @@
 
 int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void draw_coco(image im, float *pred, int side, char *label)
-{
-    int classes = 1;
-    int elems = 4+classes;
-    int j;
-    int r, c;
-
-    for(r = 0; r < side; ++r){
-        for(c = 0; c < side; ++c){
-            j = (r*side + c) * elems;
-            int class = max_index(pred+j, classes);
-            if (pred[j+class] > 0.2){
-                int width = pred[j+class]*5 + 1;
-                printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
-                float red = get_color(0,class,classes);
-                float green = get_color(1,class,classes);
-                float blue = get_color(2,class,classes);
-
-                j += classes;
-
-                box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
-                predict.x = (predict.x+c)/side;
-                predict.y = (predict.y+r)/side;
-                
-                draw_bbox(im, predict, width, red, green, blue);
-            }
-        }
-    }
-    show_image(im, label);
-}
-
 void train_coco(char *cfgfile, char *weightfile)
 {
+    //char *train_images = "/home/pjreddie/data/voc/test/train.txt";
     //char *train_images = "/home/pjreddie/data/coco/train.txt";
-    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
+    char *train_images = "data/coco.trainval.txt";
+    //char *train_images = "data/bags.train.list";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
-    data_seed = time(0);
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
     float avg_loss = -1;
@@ -61,7 +32,7 @@
         load_weights(&net, weightfile);
     }
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = 128;
+    int imgs = net.batch*net.subdivisions;
     int i = *net.seen/imgs;
     data train, buffer;
 
@@ -70,9 +41,10 @@
 
     int side = l.side;
     int classes = l.classes;
+    float jitter = l.jitter;
 
     list *plist = get_paths(train_images);
-    int N = plist->size;
+    //int N = plist->size;
     char **paths = (char **)list_to_array(plist);
 
     load_args args = {0};
@@ -82,13 +54,20 @@
     args.n = imgs;
     args.m = plist->size;
     args.classes = classes;
+    args.jitter = jitter;
     args.num_boxes = side;
     args.d = &buffer;
     args.type = REGION_DATA;
 
+    args.angle = net.angle;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
+    args.hue = net.hue;
+
     pthread_t load_thread = load_data_in_thread(args);
     clock_t time;
-    while(i*imgs < N*120){
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
         i += 1;
         time=clock();
         pthread_join(load_thread, 0);
@@ -97,25 +76,30 @@
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
-/*
-        image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
-        image copy = copy_image(im);
-        draw_coco(copy, train.y.vals[113], 7, "truth");
-        cvWaitKey(0);
-        free_image(copy);
-        */
+        /*
+           image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
+           image copy = copy_image(im);
+           draw_coco(copy, train.y.vals[113], 7, "truth");
+           cvWaitKey(0);
+           free_image(copy);
+         */
 
         time=clock();
         float loss = train_network(net, train);
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
-        if(i%1000==0){
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0 || (i < 1000 && i%100 == 0)){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
         }
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
         free_data(train);
     }
     char buff[256];
@@ -123,59 +107,10 @@
     save_weights(net, buff);
 }
 
-void get_probs(float *predictions, int total, int classes, int inc, float **probs)
-{
-    int i,j;
-    for (i = 0; i < total; ++i){
-        int index = i*inc;
-        float scale = predictions[index];
-        probs[i][0] = scale;
-        for(j = 0; j < classes; ++j){
-            probs[i][j] = scale*predictions[index+j+1];
-        }
-    }
-}
-void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
-{
-    int i,j;
-    for (i = 0; i < num_boxes*num_boxes; ++i){
-        for(j = 0; j < n; ++j){
-            int index = i*n+j;
-            int offset = index*per_box;
-            int row = i / num_boxes;
-            int col = i % num_boxes;
-            boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
-            boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
-            boxes[index].w = predictions[offset + 2];
-            boxes[index].h = predictions[offset + 3];
-        }
-    }
-}
-
-void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
-{
-    int i,j;
-    int per_box = 4+classes;
-    for (i = 0; i < num_boxes*num_boxes*num; ++i){
-        int offset = i*per_box;
-        for(j = 0; j < classes; ++j){
-            float prob = predictions[offset+j];
-            probs[i][j] = (prob > thresh) ? prob : 0;
-        }
-        int row = i / num_boxes;
-        int col = i % num_boxes;
-        offset += classes;
-        boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
-        boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
-        boxes[i].w = predictions[offset + 2];
-        boxes[i].h = predictions[offset + 3];
-    }
-}
-
 void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
 {
     int i, j;
-    for(i = 0; i < num_boxes*num_boxes; ++i){
+    for(i = 0; i < num_boxes; ++i){
         float xmin = boxes[i].x - boxes[i].w/2.;
         float xmax = boxes[i].x + boxes[i].w/2.;
         float ymin = boxes[i].y - boxes[i].h/2.;
@@ -203,201 +138,6 @@
     return atoi(p+1);
 }
 
-void validate_recall(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
-    list *plist = get_paths(val_images);
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n - 1];
-
-    int num_boxes = l.side;
-    int num = l.n;
-    int classes = l.classes;
-
-    int j;
-
-    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
-    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
-    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
-
-    int N = plist->size;
-    int i=0;
-    int k;
-
-    float iou_thresh = .5;
-    float thresh = .1;
-    int total = 0;
-    int correct = 0;
-    float avg_iou = 0;
-    int nms = 1;
-    int proposals = 0;
-    int save = 1;
-
-    for (i = 0; i < N; ++i) {
-        char *path = paths[i];
-        image orig = load_image_color(path, 0, 0);
-        image resized = resize_image(orig, net.w, net.h);
-
-        float *X = resized.data;
-        float *predictions = network_predict(net, X);
-        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
-        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
-        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
-
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        for(k = 0; k < num_boxes*num_boxes*num; ++k){
-            if(probs[k][0] > thresh){
-                ++proposals;
-                if(save){
-                    char buff[256];
-                    sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
-                    int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
-                    int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
-                    int w = boxes[k].w * orig.w;
-                    int h = boxes[k].h * orig.h;
-                    image cropped = crop_image(orig, dx, dy, w, h);
-                    image sized = resize_image(cropped, 224, 224);
-#ifdef OPENCV
-                    save_image_jpg(sized, buff);
-#endif
-                    free_image(sized);
-                    free_image(cropped);
-                    sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
-                    char *im_id = basecfg(path);
-                    FILE *fp = fopen(buff, "w");
-                    fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
-                    fclose(fp);
-                    free(im_id);
-                }
-            }
-        }
-        for (j = 0; j < num_labels; ++j) {
-            ++total;
-            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
-            float best_iou = 0;
-            for(k = 0; k < num_boxes*num_boxes*num; ++k){
-                float iou = box_iou(boxes[k], t);
-                if(probs[k][0] > thresh && iou > best_iou){
-                    best_iou = iou;
-                }
-            }
-            avg_iou += best_iou;
-            if(best_iou > iou_thresh){
-                ++correct;
-            }
-        }
-        free(truth);
-        free_image(orig);
-        free_image(resized);
-        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
-    }
-}
-
-void extract_boxes(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    char *val_images = "/home/pjreddie/data/voc/test/train.txt";
-    list *plist = get_paths(val_images);
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n - 1];
-
-    int num_boxes = l.side;
-    int num = l.n;
-    int classes = l.classes;
-
-    int j;
-
-    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
-    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
-    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
-
-    int N = plist->size;
-    int i=0;
-    int k;
-
-    int count = 0;
-    float iou_thresh = .3;
-
-    for (i = 0; i < N; ++i) {
-        fprintf(stderr, "%5d %5d\n", i, count);
-        char *path = paths[i];
-        image orig = load_image_color(path, 0, 0);
-        image resized = resize_image(orig, net.w, net.h);
-
-        float *X = resized.data;
-        float *predictions = network_predict(net, X);
-        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
-        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
-
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        FILE *label = stdin;
-        for(k = 0; k < num_boxes*num_boxes*num; ++k){
-            int overlaps = 0;
-            for (j = 0; j < num_labels; ++j) {
-                box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
-                float iou = box_iou(boxes[k], t);
-                if (iou > iou_thresh){
-                    if (!overlaps) {
-                        char buff[256];
-                        sprintf(buff, "/data/extracted/labels/%d.txt", count);
-                        label = fopen(buff, "w");
-                        overlaps = 1;
-                    }
-                    fprintf(label, "%d %f\n", truth[j].id, iou);
-                }
-            }
-            if (overlaps) {
-                char buff[256];
-                sprintf(buff, "/data/extracted/imgs/%d", count++);
-                int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
-                int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
-                int w = boxes[k].w * orig.w;
-                int h = boxes[k].h * orig.h;
-                image cropped = crop_image(orig, dx, dy, w, h);
-                image sized = resize_image(cropped, 224, 224);
-#ifdef OPENCV
-                save_image_jpg(sized, buff);
-#endif
-                free_image(sized);
-                free_image(cropped);
-                fclose(label);
-            }
-        }
-        free(truth);
-        free_image(orig);
-        free_image(resized);
-    }
-}
-
 void validate_coco(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -408,13 +148,15 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    char *base = "/home/pjreddie/backup/";
+    char *base = "results/";
     list *plist = get_paths("data/coco_val_5k.list");
+    //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
     char **paths = (char **)list_to_array(plist);
 
-    int num_boxes = 9;
-    int num = 4;
-    int classes = 1;
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int side = l.side;
 
     int j;
     char buff[1024];
@@ -422,9 +164,9 @@
     FILE *fp = fopen(buff, "w");
     fprintf(fp, "[\n");
 
-    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
-    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
-    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -434,17 +176,18 @@
     int nms = 1;
     float iou_thresh = .5;
 
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.type = IMAGE_DATA;
-
     int nthreads = 8;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
     image *buf = calloc(nthreads, sizeof(image));
     image *buf_resized = calloc(nthreads, sizeof(image));
     pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.type = IMAGE_DATA;
+
     for(t = 0; t < nthreads; ++t){
         args.path = paths[i+t];
         args.im = &buf[t];
@@ -469,12 +212,12 @@
             char *path = paths[i+t-nthreads];
             int image_id = get_coco_image_id(path);
             float *X = val_resized[t].data;
-            float *predictions = network_predict(net, X);
+            network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
-            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
-            print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
+            get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
+            if (nms) do_nms_sort_v2(boxes, probs, side*side*l.n, classes, iou_thresh);
+            print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
             free_image(val[t]);
             free_image(val_resized[t]);
         }
@@ -482,36 +225,133 @@
     fseek(fp, -2, SEEK_CUR); 
     fprintf(fp, "\n]\n");
     fclose(fp);
+
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
-void test_coco(char *cfgfile, char *weightfile, char *filename)
+void validate_coco_recall(char *cfgfile, char *weightfile)
 {
-
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
     set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int side = l.side;
+
+    int j, k;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(side*side*l.n, sizeof(box));
+    float **probs = calloc(side*side*l.n, sizeof(float *));
+    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+    int m = plist->size;
+    int i=0;
+
+    float thresh = .001;
+    int nms = 0;
+    float iou_thresh = .5;
+    float nms_thresh = .5;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for(i = 0; i < m; ++i){
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        network_predict(net, sized.data);
+        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
+
+        char labelpath[4096];
+		replace_image_to_label(path, labelpath);
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < side*side*l.n; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < side*side*l.n; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
+void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
+{
+    image **alphabet = load_alphabet();
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer l = net.layers[net.n-1];
+    set_batch_network(&net, 1);
     srand(2222222);
+    float nms = .4;
     clock_t time;
-    char input[256];
+    char buff[256];
+    char *input = buff;
+    int j;
+    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
+    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
+    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
     while(1){
         if(filename){
             strncpy(input, filename, 256);
         } else {
             printf("Enter Image Path: ");
             fflush(stdout);
-            fgets(input, 256, stdin);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
             strtok(input, "\n");
         }
         image im = load_image_color(input,0,0);
         image sized = resize_image(im, net.w, net.h);
         float *X = sized.data;
         time=clock();
-        float *predictions = network_predict(net, X);
+        network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        draw_coco(im, predictions, 7, "predictions");
+        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80);
+        save_image(im, "prediction");
+        show_image(im, "predictions");
         free_image(im);
         free_image(sized);
 #ifdef OPENCV
@@ -524,6 +364,16 @@
 
 void run_coco(int argc, char **argv)
 {
+	int dont_show = find_arg(argc, argv, "-dont_show");
+	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
+	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
+    float thresh = find_float_arg(argc, argv, "-thresh", .2);
+	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
+	int ext_output = find_arg(argc, argv, "-ext_output");
+
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -532,8 +382,10 @@
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
     char *filename = (argc > 5) ? argv[5]: 0;
-    if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
+    if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
     else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
-    else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
+    else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, coco_classes, 80, frame_skip,
+		prefix, out_filename, http_stream_port, dont_show, ext_output);
 }

--
Gitblit v1.10.0