From 1e9d1fcedf1a361bcdb384f15b5b14bdb526576d Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sat, 30 Jun 2018 20:12:25 +0000
Subject: [PATCH] Fixed arch=compute_53,code=[sm_53,compute_53] for Jetson TX1

---
 src/convolutional_layer.c |   67 +++++++++++++++++++++++++++++++--
 1 files changed, 62 insertions(+), 5 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index d35246e..90f9551 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -141,7 +141,8 @@
 {
 
 #ifdef CUDNN_HALF
-	// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
+	// TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): 
+	//   Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
 	// PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
 	const cudnnDataType_t data_type = CUDNN_DATA_HALF;
 #else
@@ -164,13 +165,21 @@
 	//   on architectures with DP4A support (compute capability 6.1 and later).
 	//cudnnDataType_t data_type = CUDNN_DATA_INT8;
 
+	// backward delta
     cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
     cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
     cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
 
+	// forward
     cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
     cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
     cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
+
+	// batch norm
+	cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
+	cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
+
+	cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
 #if(CUDNN_MAJOR >= 6)
 	cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);	// cudnn >= 6.0
 #else
@@ -184,6 +193,7 @@
 		forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
 		backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
 		backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
+		printf(" CUDNN-slow ");
 	}
 
 	cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
@@ -210,6 +220,38 @@
 			backward_filter,
             0,
             &l->bf_algo);
+
+	if (data_type == CUDNN_DATA_HALF) 
+	{
+		// HALF-16 if(data_type == CUDNN_DATA_HALF)
+		l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
+		l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
+		l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
+
+		// FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
+		//l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
+		//l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
+		//l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
+
+		int fw = 0, bd = 0, bf = 0;
+		if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) fw = 1;
+			//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM \n");
+		if (l->fw_algo == CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED) fw = 2;
+			//printf("Tensor Cores - Forward enabled: l->fw_algo = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) bd = 1;
+			//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1  \n");
+		if (l->bd_algo == CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED) bd = 2;
+			//printf("Tensor Cores - Backward-data enabled: l->bd_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) bf = 1;
+			//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1   \n");
+		if (l->bf_algo == CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED) bf = 2;
+			//printf("Tensor Cores - Backward-filter enabled: l->bf_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED \n");
+
+		if (fw == 2 && bd == 2 && bf == 2) printf("TF ");
+		else if (fw == 1 && bd == 1 && bf == 1) printf("TH ");
+	}
 }
 #endif
 #endif
@@ -302,7 +344,8 @@
 
         l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
 #ifdef CUDNN_HALF
-		l.weights_gpu16 = cuda_make_array(l.weights, c*n*size*size/2);
+		l.weights_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weights, c*n*size*size / 2);
+		l.weight_updates_gpu16 = cuda_make_array(NULL, c*n*size*size / 2); //cuda_make_array(l.weight_updates, c*n*size*size / 2);
 #endif
         l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size);
 
@@ -336,7 +379,10 @@
             l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
             l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
         }
-#ifdef CUDNN
+#ifdef CUDNN		
+		cudnnCreateTensorDescriptor(&l.normDstTensorDesc);
+		cudnnCreateTensorDescriptor(&l.normDstTensorDescF16);
+		cudnnCreateTensorDescriptor(&l.normTensorDesc);
         cudnnCreateTensorDescriptor(&l.srcTensorDesc);
         cudnnCreateTensorDescriptor(&l.dstTensorDesc);
         cudnnCreateFilterDescriptor(&l.weightDesc);
@@ -351,7 +397,9 @@
     l.workspace_size = get_workspace_size(l);
     l.activation = activation;
 
-    fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+    //fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
+	l.bflops = (2.0 * l.n * l.size*l.size*l.c * l.out_h*l.out_w) / 1000000000.;
+	fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d %5.3f BF\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
 
     return l;
 }
@@ -417,6 +465,10 @@
         l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
     }
 
+	if (l->xnor) {
+		//l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
+	}
+
 #ifdef GPU
 	if (old_w < w || old_h < h) {
 		cuda_free(l->delta_gpu);
@@ -432,6 +484,11 @@
 			l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
 			l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
 		}
+
+		if (l->xnor) {
+			cuda_free(l->binary_input_gpu);
+			l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
+		}
 	}
 #ifdef CUDNN
     cudnn_convolutional_setup(l, cudnn_fastest);
@@ -445,7 +502,7 @@
 	size_t total_byte;
 	check_error(cudaMemGetInfo(&free_byte, &total_byte));
 	if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
-		printf(" used slow CUDNN algo without Workspace! \n");
+		printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
 		cudnn_convolutional_setup(l, cudnn_smallest);
 		l->workspace_size = get_workspace_size(*l);
 	}

--
Gitblit v1.10.0