From 1e9d1fcedf1a361bcdb384f15b5b14bdb526576d Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sat, 30 Jun 2018 20:12:25 +0000
Subject: [PATCH] Fixed arch=compute_53,code=[sm_53,compute_53] for Jetson TX1

---
 src/yolo_v2_class.cpp |  406 ++++++++++++++++++++++++++++-----------------------------
 1 files changed, 202 insertions(+), 204 deletions(-)

diff --git a/src/yolo_v2_class.cpp b/src/yolo_v2_class.cpp
index 14e19fb..4df9be5 100644
--- a/src/yolo_v2_class.cpp
+++ b/src/yolo_v2_class.cpp
@@ -22,18 +22,16 @@
 
 #define FRAMES 3
 
-int max_objects() { return C_SHARP_MAX_OBJECTS; }
-
 //static Detector* detector = NULL;
 static std::unique_ptr<Detector> detector;
 
-int init(const char *configurationFilename, const char *weightsFilename, int gpu)
+int init(const char *configurationFilename, const char *weightsFilename, int gpu) 
 {
     detector.reset(new Detector(configurationFilename, weightsFilename, gpu));
     return 1;
 }
 
-int detect_image(const char *filename, bbox_t_container &container)
+int detect_image(const char *filename, bbox_t_container &container) 
 {
     std::vector<bbox_t> detection = detector->detect(filename);
     for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i)
@@ -56,306 +54,306 @@
 }
 
 int dispose() {
-    //if (detector != NULL) delete detector;
-    //detector = NULL;
+	//if (detector != NULL) delete detector;
+	//detector = NULL;
     detector.reset();
     return 1;
 }
 
 #ifdef GPU
 void check_cuda(cudaError_t status) {
-    if (status != cudaSuccess) {
-        const char *s = cudaGetErrorString(status);
-        printf("CUDA Error Prev: %s\n", s);
-    }
+	if (status != cudaSuccess) {
+		const char *s = cudaGetErrorString(status);
+		printf("CUDA Error Prev: %s\n", s);
+	}
 }
 #endif
 
 struct detector_gpu_t {
-    network net;
-    image images[FRAMES];
-    float *avg;
-    float *predictions[FRAMES];
-    int demo_index;
-    unsigned int *track_id;
+	network net;
+	image images[FRAMES];
+	float *avg;
+	float *predictions[FRAMES];
+	int demo_index;
+	unsigned int *track_id;
 };
 
 YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) : cur_gpu_id(gpu_id)
 {
-    wait_stream = 0;
-    int old_gpu_index;
+	wait_stream = 0;
+	int old_gpu_index;
 #ifdef GPU
-    check_cuda(cudaGetDevice(&old_gpu_index));
+	check_cuda( cudaGetDevice(&old_gpu_index) );
 #endif
 
-    detector_gpu_ptr = std::make_shared<detector_gpu_t>();
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_ptr = std::make_shared<detector_gpu_t>();
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 
 #ifdef GPU
-    //check_cuda( cudaSetDevice(cur_gpu_id) );
-    cuda_set_device(cur_gpu_id);
-    printf(" Used GPU %d \n", cur_gpu_id);
+	//check_cuda( cudaSetDevice(cur_gpu_id) );
+	cuda_set_device(cur_gpu_id);
+	printf(" Used GPU %d \n", cur_gpu_id);
 #endif
-    network &net = detector_gpu.net;
-    net.gpu_index = cur_gpu_id;
-    //gpu_index = i;
+	network &net = detector_gpu.net;
+	net.gpu_index = cur_gpu_id;
+	//gpu_index = i;
+	
+	char *cfgfile = const_cast<char *>(cfg_filename.data());
+	char *weightfile = const_cast<char *>(weight_filename.data());
 
-    char *cfgfile = const_cast<char *>(cfg_filename.data());
-    char *weightfile = const_cast<char *>(weight_filename.data());
+	net = parse_network_cfg_custom(cfgfile, 1);
+	if (weightfile) {
+		load_weights(&net, weightfile);
+	}
+	set_batch_network(&net, 1);
+	net.gpu_index = cur_gpu_id;
+	fuse_conv_batchnorm(net);
 
-    net = parse_network_cfg_custom(cfgfile, 1);
-    if (weightfile) {
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    net.gpu_index = cur_gpu_id;
-    fuse_conv_batchnorm(net);
+	layer l = net.layers[net.n - 1];
+	int j;
 
-    layer l = net.layers[net.n - 1];
-    int j;
+	detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
+	for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
+	for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
 
-    detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
-    for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
-    for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
-
-    detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
-    for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
+	detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
+	for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
 
 #ifdef GPU
-    check_cuda(cudaSetDevice(old_gpu_index));
+	check_cuda( cudaSetDevice(old_gpu_index) );
 #endif
 }
 
 
-YOLODLL_API Detector::~Detector()
+YOLODLL_API Detector::~Detector() 
 {
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
-    layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
 
-    free(detector_gpu.track_id);
+	free(detector_gpu.track_id);
 
-    free(detector_gpu.avg);
-    for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
-    for (int j = 0; j < FRAMES; ++j) if (detector_gpu.images[j].data) free(detector_gpu.images[j].data);
+	free(detector_gpu.avg);
+	for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
+	for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
 
-    int old_gpu_index;
+	int old_gpu_index;
 #ifdef GPU
-    cudaGetDevice(&old_gpu_index);
-    cuda_set_device(detector_gpu.net.gpu_index);
+	cudaGetDevice(&old_gpu_index);
+	cuda_set_device(detector_gpu.net.gpu_index);
 #endif
 
-    free_network(detector_gpu.net);
+	free_network(detector_gpu.net);
 
 #ifdef GPU
-    cudaSetDevice(old_gpu_index);
+	cudaSetDevice(old_gpu_index);
 #endif
 }
 
 YOLODLL_API int Detector::get_net_width() const {
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
-    return detector_gpu.net.w;
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.w;
 }
 YOLODLL_API int Detector::get_net_height() const {
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
-    return detector_gpu.net.h;
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.h;
 }
 YOLODLL_API int Detector::get_net_color_depth() const {
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
-    return detector_gpu.net.c;
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	return detector_gpu.net.c;
 }
 
 
 YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean)
 {
-    std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
-    *image_ptr = load_image(image_filename);
-    return detect(*image_ptr, thresh, use_mean);
+	std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
+	*image_ptr = load_image(image_filename);
+	return detect(*image_ptr, thresh, use_mean);
 }
 
 static image load_image_stb(char *filename, int channels)
 {
-    int w, h, c;
-    unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
-    if (!data)
-        throw std::runtime_error("file not found");
-    if (channels) c = channels;
-    int i, j, k;
-    image im = make_image(w, h, c);
-    for (k = 0; k < c; ++k) {
-        for (j = 0; j < h; ++j) {
-            for (i = 0; i < w; ++i) {
-                int dst_index = i + w * j + w * h*k;
-                int src_index = k + c * i + c * w*j;
-                im.data[dst_index] = (float)data[src_index] / 255.;
-            }
-        }
-    }
-    free(data);
-    return im;
+	int w, h, c;
+	unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
+	if (!data) 
+		throw std::runtime_error("file not found");
+	if (channels) c = channels;
+	int i, j, k;
+	image im = make_image(w, h, c);
+	for (k = 0; k < c; ++k) {
+		for (j = 0; j < h; ++j) {
+			for (i = 0; i < w; ++i) {
+				int dst_index = i + w*j + w*h*k;
+				int src_index = k + c*i + c*w*j;
+				im.data[dst_index] = (float)data[src_index] / 255.;
+			}
+		}
+	}
+	free(data);
+	return im;
 }
 
 YOLODLL_API image_t Detector::load_image(std::string image_filename)
 {
-    char *input = const_cast<char *>(image_filename.data());
-    image im = load_image_stb(input, 3);
+	char *input = const_cast<char *>(image_filename.data());
+	image im = load_image_stb(input, 3);
 
-    image_t img;
-    img.c = im.c;
-    img.data = im.data;
-    img.h = im.h;
-    img.w = im.w;
+	image_t img;
+	img.c = im.c;
+	img.data = im.data;
+	img.h = im.h;
+	img.w = im.w;
 
-    return img;
+	return img;
 }
 
 
 YOLODLL_API void Detector::free_image(image_t m)
 {
-    if (m.data) {
-        free(m.data);
-    }
+	if (m.data) {
+		free(m.data);
+	}
 }
 
 YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh, bool use_mean)
 {
-    detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
-    network &net = detector_gpu.net;
-    int old_gpu_index;
+	detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	network &net = detector_gpu.net;
+	int old_gpu_index;
 #ifdef GPU
-    cudaGetDevice(&old_gpu_index);
-    if (cur_gpu_id != old_gpu_index)
-        cudaSetDevice(net.gpu_index);
+	cudaGetDevice(&old_gpu_index);
+	if(cur_gpu_id != old_gpu_index)
+		cudaSetDevice(net.gpu_index);
 
-    net.wait_stream = wait_stream;	// 1 - wait CUDA-stream, 0 - not to wait
+	net.wait_stream = wait_stream;	// 1 - wait CUDA-stream, 0 - not to wait
 #endif
-                                    //std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
+	//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
 
-                                    //float nms = .4;
+	//float nms = .4;
 
-    image im;
-    im.c = img.c;
-    im.data = img.data;
-    im.h = img.h;
-    im.w = img.w;
+	image im;
+	im.c = img.c;
+	im.data = img.data;
+	im.h = img.h;
+	im.w = img.w;
 
-    image sized;
+	image sized;
+	
+	if (net.w == im.w && net.h == im.h) {
+		sized = make_image(im.w, im.h, im.c);
+		memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
+	}
+	else
+		sized = resize_image(im, net.w, net.h);
 
-    if (net.w == im.w && net.h == im.h) {
-        sized = make_image(im.w, im.h, im.c);
-        memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float));
-    }
-    else
-        sized = resize_image(im, net.w, net.h);
+	layer l = net.layers[net.n - 1];
 
-    layer l = net.layers[net.n - 1];
+	float *X = sized.data;
 
-    float *X = sized.data;
+	float *prediction = network_predict(net, X);
 
-    float *prediction = network_predict(net, X);
+	if (use_mean) {
+		memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
+		mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
+		l.output = detector_gpu.avg;
+		detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
+	}
+	//get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
+	//if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
 
-    if (use_mean) {
-        memcpy(detector_gpu.predictions[detector_gpu.demo_index], prediction, l.outputs * sizeof(float));
-        mean_arrays(detector_gpu.predictions, FRAMES, l.outputs, detector_gpu.avg);
-        l.output = detector_gpu.avg;
-        detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
-    }
-    //get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
-    //if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
+	int nboxes = 0;
+	int letterbox = 0;
+	float hier_thresh = 0.5;
+	detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
+	if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
 
-    int nboxes = 0;
-    int letterbox = 0;
-    float hier_thresh = 0.5;
-    detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
-    if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
+	std::vector<bbox_t> bbox_vec;
 
-    std::vector<bbox_t> bbox_vec;
+	for (size_t i = 0; i < nboxes; ++i) {
+		box b = dets[i].bbox;
+		int const obj_id = max_index(dets[i].prob, l.classes);
+		float const prob = dets[i].prob[obj_id];
+		
+		if (prob > thresh) 
+		{
+			bbox_t bbox;
+			bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
+			bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
+			bbox.w = b.w*im.w;
+			bbox.h = b.h*im.h;
+			bbox.obj_id = obj_id;
+			bbox.prob = prob;
+			bbox.track_id = 0;
 
-    for (size_t i = 0; i < nboxes; ++i) {
-        box b = dets[i].bbox;
-        int const obj_id = max_index(dets[i].prob, l.classes);
-        float const prob = dets[i].prob[obj_id];
+			bbox_vec.push_back(bbox);
+		}
+	}
 
-        if (prob > thresh)
-        {
-            bbox_t bbox;
-            bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
-            bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
-            bbox.w = b.w*im.w;
-            bbox.h = b.h*im.h;
-            bbox.obj_id = obj_id;
-            bbox.prob = prob;
-            bbox.track_id = 0;
-
-            bbox_vec.push_back(bbox);
-        }
-    }
-
-    free_detections(dets, nboxes);
-    if (sized.data)
-        free(sized.data);
+	free_detections(dets, nboxes);
+	if(sized.data)
+		free(sized.data);
 
 #ifdef GPU
-    if (cur_gpu_id != old_gpu_index)
-        cudaSetDevice(old_gpu_index);
+	if (cur_gpu_id != old_gpu_index)
+		cudaSetDevice(old_gpu_index);
 #endif
 
-    return bbox_vec;
+	return bbox_vec;
 }
 
-YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history,
-    int const frames_story, int const max_dist)
+YOLODLL_API std::vector<bbox_t> Detector::tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history, 
+	int const frames_story, int const max_dist)
 {
-    detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
+	detector_gpu_t &det_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get());
 
-    bool prev_track_id_present = false;
-    for (auto &i : prev_bbox_vec_deque)
-        if (i.size() > 0) prev_track_id_present = true;
+	bool prev_track_id_present = false;
+	for (auto &i : prev_bbox_vec_deque)
+		if (i.size() > 0) prev_track_id_present = true;
 
-    if (!prev_track_id_present) {
-        for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
-            cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
-        prev_bbox_vec_deque.push_front(cur_bbox_vec);
-        if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
-        return cur_bbox_vec;
-    }
+	if (!prev_track_id_present) {
+		for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
+		prev_bbox_vec_deque.push_front(cur_bbox_vec);
+		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+		return cur_bbox_vec;
+	}
 
-    std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max());
+	std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max());
 
-    for (auto &prev_bbox_vec : prev_bbox_vec_deque) {
-        for (auto &i : prev_bbox_vec) {
-            int cur_index = -1;
-            for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
-                bbox_t const& k = cur_bbox_vec[m];
-                if (i.obj_id == k.obj_id) {
-                    float center_x_diff = (float)(i.x + i.w / 2) - (float)(k.x + k.w / 2);
-                    float center_y_diff = (float)(i.y + i.h / 2) - (float)(k.y + k.h / 2);
-                    unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff * center_y_diff);
-                    if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
-                        dist_vec[m] = cur_dist;
-                        cur_index = m;
-                    }
-                }
-            }
+	for (auto &prev_bbox_vec : prev_bbox_vec_deque) {
+		for (auto &i : prev_bbox_vec) {
+			int cur_index = -1;
+			for (size_t m = 0; m < cur_bbox_vec.size(); ++m) {
+				bbox_t const& k = cur_bbox_vec[m];
+				if (i.obj_id == k.obj_id) {
+					float center_x_diff = (float)(i.x + i.w/2) - (float)(k.x + k.w/2);
+					float center_y_diff = (float)(i.y + i.h/2) - (float)(k.y + k.h/2);
+					unsigned int cur_dist = sqrt(center_x_diff*center_x_diff + center_y_diff*center_y_diff);
+					if (cur_dist < max_dist && (k.track_id == 0 || dist_vec[m] > cur_dist)) {
+						dist_vec[m] = cur_dist;
+						cur_index = m;
+					}
+				}
+			}
 
-            bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(),
-                [&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
+			bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), 
+				[&i](bbox_t const& b) { return b.track_id == i.track_id && b.obj_id == i.obj_id; });
 
-            if (cur_index >= 0 && track_id_absent) {
-                cur_bbox_vec[cur_index].track_id = i.track_id;
-                cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
-                cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
-            }
-        }
-    }
+			if (cur_index >= 0 && track_id_absent){
+				cur_bbox_vec[cur_index].track_id = i.track_id;
+				cur_bbox_vec[cur_index].w = (cur_bbox_vec[cur_index].w + i.w) / 2;
+				cur_bbox_vec[cur_index].h = (cur_bbox_vec[cur_index].h + i.h) / 2;
+			}
+		}
+	}
 
-    for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
-        if (cur_bbox_vec[i].track_id == 0)
-            cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
+	for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
+		if (cur_bbox_vec[i].track_id == 0)
+			cur_bbox_vec[i].track_id = det_gpu.track_id[cur_bbox_vec[i].obj_id]++;
 
-    if (change_history) {
-        prev_bbox_vec_deque.push_front(cur_bbox_vec);
-        if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
-    }
+	if (change_history) {
+		prev_bbox_vec_deque.push_front(cur_bbox_vec);
+		if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back();
+	}
 
-    return cur_bbox_vec;
+	return cur_bbox_vec;
 }
\ No newline at end of file

--
Gitblit v1.10.0