From 1edcf73a73d2007afc61289245763f5cf0c29e10 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 04 Dec 2014 07:20:29 +0000
Subject: [PATCH] Detection good, split up col images

---
 src/convolutional_layer.c |  216 ++++++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 168 insertions(+), 48 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 6c7f947..bae06d3 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -2,6 +2,7 @@
 #include "utils.h"
 #include "mini_blas.h"
 #include <stdio.h>
+#include <time.h>
 
 int convolutional_out_height(convolutional_layer layer)
 {
@@ -64,8 +65,8 @@
     layer->bias_updates = calloc(n, sizeof(float));
     layer->bias_momentum = calloc(n, sizeof(float));
     float scale = 1./(size*size*c);
-    //scale = .0001;
-    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()-.5);
+    scale = .01;
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
     for(i = 0; i < n; ++i){
         //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = .5;
@@ -73,7 +74,7 @@
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
 
-    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
     layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     #ifdef GPU
@@ -85,7 +86,7 @@
     layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
     layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
 
-    layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
+    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
     layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
     layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
     #endif
@@ -105,7 +106,7 @@
     int out_w = convolutional_out_width(*layer);
 
     layer->col_image = realloc(layer->col_image,
-                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+                                out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
     layer->output = realloc(layer->output,
                                 layer->batch*out_h * out_w * layer->n*sizeof(float));
     layer->delta  = realloc(layer->delta,
@@ -142,20 +143,14 @@
     float *b = layer.col_image;
     float *c = layer.output;
 
-    im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w, 
-        layer.size, layer.stride, layer.pad, b);
 
     for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in, layer.c, layer.h, layer.w, 
+            layer.size, layer.stride, layer.pad, b);
         gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
         c += n*m;
-        in += layer.h*layer.w*layer.c;
-        b += k*n;
+        in += layer.c*layer.h*layer.w;
     }
-    /*
-    int i;
-    for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
-    printf("\n");
-    */
     activate_array(layer.output, m*n*layer.batch, layer.activation);
 }
 
@@ -166,12 +161,12 @@
         *convolutional_out_width(layer);
     for(b = 0; b < layer.batch; ++b){
         for(i = 0; i < layer.n; ++i){
-            layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size);
+            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
         }
     }
 }
 
-void backward_convolutional_layer(convolutional_layer layer, float *delta)
+void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
 {
     int i;
     int m = layer.n;
@@ -181,33 +176,27 @@
     gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
     learn_bias_convolutional_layer(layer);
 
-    float *a = layer.delta;
-    float *b = layer.col_image;
-    float *c = layer.filter_updates;
+    if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
 
     for(i = 0; i < layer.batch; ++i){
+        float *a = layer.delta + i*m*k;
+        float *b = layer.col_image;
+        float *c = layer.filter_updates;
+
+        float *im = in+i*layer.c*layer.h*layer.w;
+
+        im2col_cpu(im, layer.c, layer.h, layer.w, 
+                layer.size, layer.stride, layer.pad, b);
         gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
-        a += m*k;
-        b += k*n;
-    }
 
-    if(delta){
-        m = layer.size*layer.size*layer.c;
-        k = layer.n;
-        n = convolutional_out_height(layer)*
-            convolutional_out_width(layer);
+        if(delta){
+            a = layer.filters;
+            b = layer.delta + i*m*k;
+            c = layer.col_image;
 
-        a = layer.filters;
-        b = layer.delta;
-        c = layer.col_image;
+            gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
 
-        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
-
-        for(i = 0; i < layer.batch; ++i){
-            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
-            col2im_cpu(c, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
-            c += k*n;
-            delta += layer.h*layer.w*layer.c;
+            col2im_cpu(layer.col_image, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
         }
     }
 }
@@ -216,7 +205,7 @@
 {
     int size = layer.size*layer.size*layer.c*layer.n;
     axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
-    scal_cpu(layer.n,layer.momentum, layer.bias_updates, 1);
+    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
 
     scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
     axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
@@ -278,22 +267,153 @@
 }
 
 #ifdef GPU
+
+cl_kernel get_convolutional_learn_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
+{
+    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
+
+    cl_setup();
+    cl_kernel kernel = get_convolutional_learn_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+cl_kernel get_convolutional_bias_kernel()
+{
+    static int init = 0;
+    static cl_kernel kernel;
+    if(!init){
+        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
+        init = 1;
+    }
+    return kernel;
+}
+
+void bias_output_gpu(const convolutional_layer layer)
+{
+    int out_h = convolutional_out_height(layer);
+    int out_w = convolutional_out_width(layer);
+    int size = out_h*out_w;
+
+    cl_setup();
+    cl_kernel kernel = get_convolutional_bias_kernel();
+    cl_command_queue queue = cl.queue;
+
+    cl_uint i = 0;
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
+    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
+    check_error(cl);
+
+    const size_t global_size[] = {layer.n*size, layer.batch};
+
+    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
+    check_error(cl);
+}
+
+//#define TIMEIT
+
 void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
 {
+    int i;
     int m = layer.n;
     int k = layer.size*layer.size*layer.c;
     int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer)*
-        layer.batch;
+        convolutional_out_width(layer);
 
-    cl_write_array(layer.filters_cl, layer.filters, m*k);
-    cl_mem a = layer.filters_cl;
-    cl_mem b = layer.col_image_cl;
-    cl_mem c = layer.output_cl;
-    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
-    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,0,c,n);
-    activate_array_ongpu(layer.output_cl, m*n, layer.activation);
-    cl_read_array(layer.output_cl, layer.output, m*n);
+    bias_output_gpu(layer);
+
+    for(i = 0; i < layer.batch; ++i){
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+        cl_mem a = layer.filters_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.output_cl;
+        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
+    }
+    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
 }
+
+void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
+{
+    int i;
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+        convolutional_out_width(layer);
+    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
+    learn_bias_convolutional_layer_ongpu(layer);
+
+    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
+
+    for(i = 0; i < layer.batch; ++i){
+        cl_mem a = layer.delta_cl;
+        cl_mem b = layer.col_image_cl;
+        cl_mem c = layer.filter_updates_cl;
+
+        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
+        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
+
+        if(delta_cl){
+
+            cl_mem a = layer.filters_cl;
+            cl_mem b = layer.delta_cl;
+            cl_mem c = layer.col_image_cl;
+
+            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
+
+            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
+        }
+    }
+}
+
+void pull_convolutional_layer(convolutional_layer layer)
+{
+    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.biases_cl, layer.biases, layer.n);
+}
+
+void push_convolutional_layer(convolutional_layer layer)
+{
+    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.biases_cl, layer.biases, layer.n);
+}
+
+void update_convolutional_layer_gpu(convolutional_layer layer)
+{
+    int size = layer.size*layer.size*layer.c*layer.n;
+    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
+    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
+
+    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
+    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
+    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
+    pull_convolutional_layer(layer);
+}
+
+
 #endif
 

--
Gitblit v1.10.0