From 1edcf73a73d2007afc61289245763f5cf0c29e10 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 04 Dec 2014 07:20:29 +0000
Subject: [PATCH] Detection good, split up col images

---
 src/network.c |  233 ++++++----------------------------------------------------
 1 files changed, 25 insertions(+), 208 deletions(-)

diff --git a/src/network.c b/src/network.c
index 8167d85..3a6a184 100644
--- a/src/network.c
+++ b/src/network.c
@@ -31,148 +31,6 @@
     return net;
 }
 
-#ifdef GPU
-
-void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
-{
-    //printf("start\n");
-    int i;
-    for(i = 0; i < net.n; ++i){
-        //clock_t time = clock();
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            forward_convolutional_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            forward_cost_layer_gpu(layer, input, truth);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            forward_connected_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            forward_maxpool_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            forward_softmax_layer_gpu(layer, input);
-            input = layer.output_cl;
-        }
-        //printf("%d %f\n", i, sec(clock()-time));
-        /*
-           else if(net.types[i] == CROP){
-           crop_layer layer = *(crop_layer *)net.layers[i];
-           forward_crop_layer(layer, input);
-           input = layer.output;
-           }
-           else if(net.types[i] == NORMALIZATION){
-           normalization_layer layer = *(normalization_layer *)net.layers[i];
-           forward_normalization_layer(layer, input);
-           input = layer.output;
-           }
-         */
-    }
-}
-
-void backward_network_gpu(network net, cl_mem input)
-{
-    int i;
-    cl_mem prev_input;
-    cl_mem prev_delta;
-    for(i = net.n-1; i >= 0; --i){
-        if(i == 0){
-            prev_input = input;
-            prev_delta = 0;
-        }else{
-            prev_input = get_network_output_cl_layer(net, i-1);
-            prev_delta = get_network_delta_cl_layer(net, i-1);
-        }
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == COST){
-            cost_layer layer = *(cost_layer *)net.layers[i];
-            backward_cost_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            backward_connected_layer_gpu(layer, prev_input, prev_delta);
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            backward_maxpool_layer_gpu(layer, prev_delta);
-        }
-        else if(net.types[i] == SOFTMAX){
-            softmax_layer layer = *(softmax_layer *)net.layers[i];
-            backward_softmax_layer_gpu(layer, prev_delta);
-        }
-    }
-}
-
-void update_network_gpu(network net)
-{
-    int i;
-    for(i = 0; i < net.n; ++i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            update_convolutional_layer_gpu(layer);
-        }
-        else if(net.types[i] == CONNECTED){
-            connected_layer layer = *(connected_layer *)net.layers[i];
-            update_connected_layer_gpu(layer);
-        }
-    }
-}
-
-cl_mem get_network_output_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.output_cl;
-    }
-    return 0;
-}
-
-cl_mem get_network_delta_cl_layer(network net, int i)
-{
-    if(net.types[i] == CONVOLUTIONAL){
-        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == CONNECTED){
-        connected_layer layer = *(connected_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == MAXPOOL){
-        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    else if(net.types[i] == SOFTMAX){
-        softmax_layer layer = *(softmax_layer *)net.layers[i];
-        return layer.delta_cl;
-    }
-    return 0;
-}
-
-#endif
 
 void forward_network(network net, float *input, float *truth, int train)
 {
@@ -355,7 +213,7 @@
         }
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            backward_convolutional_layer(layer, prev_delta);
+            backward_convolutional_layer(layer, prev_input, prev_delta);
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
@@ -381,52 +239,6 @@
 }
 
 
-#ifdef GPU
-float train_network_datum_gpu(network net, float *x, float *y)
-{
-    int x_size = get_network_input_size(net)*net.batch;
-    int y_size = get_network_output_size(net)*net.batch;
-    clock_t time = clock();
-    if(!*net.input_cl){
-        *net.input_cl = cl_make_array(x, x_size);
-        *net.truth_cl = cl_make_array(y, y_size);
-    }else{
-        cl_write_array(*net.input_cl, x, x_size);
-        cl_write_array(*net.truth_cl, y, y_size);
-    }
-    //printf("trans %f\n", sec(clock()-time));
-    time = clock();
-    forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
-    //printf("forw %f\n", sec(clock()-time));
-    time = clock();
-    backward_network_gpu(net, *net.input_cl);
-    //printf("back %f\n", sec(clock()-time));
-    time = clock();
-    float error = get_network_cost(net);
-    update_network_gpu(net);
-    //printf("updt %f\n", sec(clock()-time));
-    time = clock();
-    return error;
-}
-
-float train_network_sgd_gpu(network net, data d, int n)
-{
-    int batch = net.batch;
-    float *X = calloc(batch*d.X.cols, sizeof(float));
-    float *y = calloc(batch*d.y.cols, sizeof(float));
-
-    int i;
-    float sum = 0;
-    for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
-        float err = train_network_datum_gpu(net, X, y);
-        sum += err;
-    }
-    free(X);
-    free(y);
-    return (float)sum/(n*batch);
-}
-#endif
 
 
 float train_network_datum(network net, float *x, float *y)
@@ -449,7 +261,7 @@
     int i;
     float sum = 0;
     for(i = 0; i < n; ++i){
-        get_batch(d, batch, X, y);
+        get_random_batch(d, batch, X, y);
         float err = train_network_datum(net, X, y);
         sum += err;
     }
@@ -457,6 +269,7 @@
     free(y);
     return (float)sum/(n*batch);
 }
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
@@ -476,6 +289,23 @@
     return (float)sum/(n*batch);
 }
 
+float train_network_data_cpu(network net, data d, int n)
+{
+    int batch = net.batch;
+    float *X = calloc(batch*d.X.cols, sizeof(float));
+    float *y = calloc(batch*d.y.cols, sizeof(float));
+
+    int i;
+    float sum = 0;
+    for(i = 0; i < n; ++i){
+        get_next_batch(d, batch, i*batch, X, y);
+        float err = train_network_datum(net, X, y);
+        sum += err;
+    }
+    free(X);
+    free(y);
+    return (float)sum/(n*batch);
+}
 
 void train_network(network net, data d)
 {
@@ -646,27 +476,14 @@
     } 
 }
 
-void top_predictions(network net, int n, int *index)
+void top_predictions(network net, int k, int *index)
 {
-    int i,j;
-    int k = get_network_output_size(net);
+    int size = get_network_output_size(net);
     float *out = get_network_output(net);
-    float thresh = FLT_MAX;
-    for(i = 0; i < n; ++i){
-        float max = -FLT_MAX;
-        int max_i = -1;
-        for(j = 0; j < k; ++j){
-            float val = out[j];
-            if(val > max &&  val < thresh){
-                max = val;
-                max_i = j;
-            }
-        }
-        index[i] = max_i;
-        thresh = max;
-    }
+    top_k(out, size, k, index);
 }
 
+
 float *network_predict(network net, float *input)
 {
     forward_network(net, input, 0, 0);
@@ -704,7 +521,7 @@
     int i,j,b;
     int k = get_network_output_size(net);
     matrix pred = make_matrix(test.X.rows, k);
-    float *X = calloc(net.batch*test.X.rows, sizeof(float));
+    float *X = calloc(net.batch*test.X.cols, sizeof(float));
     for(i = 0; i < test.X.rows; i += net.batch){
         for(b = 0; b < net.batch; ++b){
             if(i+b == test.X.rows) break;

--
Gitblit v1.10.0