From 22796c5a496a89e47dfafa68342e090d576c4866 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Sun, 10 Jun 2018 10:58:37 +0000
Subject: [PATCH] Minor fix

---
 src/batchnorm_layer.c |  146 +++++++++++++++++++++++++++++++++++++-----------
 1 files changed, 111 insertions(+), 35 deletions(-)

diff --git a/src/batchnorm_layer.c b/src/batchnorm_layer.c
index 510f1b2..d35d9d2 100644
--- a/src/batchnorm_layer.c
+++ b/src/batchnorm_layer.c
@@ -52,6 +52,12 @@
 
     layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
     layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
+#ifdef CUDNN
+	cudnnCreateTensorDescriptor(&layer.normTensorDesc);
+	cudnnCreateTensorDescriptor(&layer.normDstTensorDesc);
+	cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
+	cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
+#endif
 #endif
     return layer;
 }
@@ -127,17 +133,33 @@
         l.out_h = l.out_w = 1;
     }
     if(state.train){
-        mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);   
-        variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);   
+        mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
+        variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
+
+        scal_cpu(l.out_c, .9, l.rolling_mean, 1);
+        axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
+        scal_cpu(l.out_c, .9, l.rolling_variance, 1);
+        axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
+
+        copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
         normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);   
+        copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
     } else {
         normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
     }
     scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
 }
 
-void backward_batchnorm_layer(const layer layer, network_state state)
+void backward_batchnorm_layer(const layer l, network_state state)
 {
+    backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
+
+    scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
+
+    mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
+    variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
+    normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
+    if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
 }
 
 #ifdef GPU
@@ -157,39 +179,93 @@
 
 void forward_batchnorm_layer_gpu(layer l, network_state state)
 {
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-    if(l.type == CONNECTED){
-        l.out_c = l.outputs;
-        l.out_h = l.out_w = 1;
-    }
-    if (state.train) {
-        fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
-        fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
+	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+	copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+	if (state.train) {
+#ifdef CUDNN
+		float one = 1;
+		float zero = 0;
+		cudnnBatchNormalizationForwardTraining(cudnn_handle(),
+			CUDNN_BATCHNORM_SPATIAL,
+			&one,
+			&zero,
+			l.normDstTensorDesc,
+			l.x_gpu,				// input
+			l.normDstTensorDesc,
+			l.output_gpu,			// output
+			l.normTensorDesc,
+			l.scales_gpu,
+			l.biases_gpu,
+			.01,
+			l.rolling_mean_gpu,		// output (should be FP32)
+			l.rolling_variance_gpu,	// output (should be FP32)
+			.00001,
+			l.mean_gpu,			// output (should be FP32)
+			l.variance_gpu);	// output (should be FP32)
+#else
+		fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
+		fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
 
-        scal_ongpu(l.out_c, .95, l.rolling_mean_gpu, 1);
-        axpy_ongpu(l.out_c, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
-        scal_ongpu(l.out_c, .95, l.rolling_variance_gpu, 1);
-        axpy_ongpu(l.out_c, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
+		scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
+		axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
+		scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
+		axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
 
-        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
-        normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-        copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
-    } else {
-        normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-    }
+		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
+		normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
 
-    scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-}
-
-void backward_batchnorm_layer_gpu(const layer l, network_state state)
-{
-    backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
-
-    scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
-
-    fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
-    fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
-    normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
-    if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
-}
+		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
 #endif
+	}
+	else {
+		normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+	}
+
+}
+
+void backward_batchnorm_layer_gpu(layer l, network_state state)
+{
+	if (!state.train) {
+		l.mean_gpu = l.rolling_mean_gpu;
+		l.variance_gpu = l.rolling_variance_gpu;
+	}
+#ifdef CUDNN
+	float one = 1;
+	float zero = 0;
+	cudnnBatchNormalizationBackward(cudnn_handle(),
+		CUDNN_BATCHNORM_SPATIAL,
+		&one,
+		&zero,
+		&one,
+		&one,
+		l.normDstTensorDesc,
+		l.x_gpu,				// input
+		l.normDstTensorDesc,
+		l.delta_gpu,			// input
+		l.normDstTensorDesc,
+		l.x_norm_gpu,			// output
+		l.normTensorDesc,
+		l.scales_gpu,			// output (should be FP32)
+		l.scale_updates_gpu,	// output (should be FP32)
+		l.bias_updates_gpu,		// output (should be FP32)
+		.00001,
+		l.mean_gpu,				// input (should be FP32)
+		l.variance_gpu);		// input (should be FP32)
+	copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
+#else
+	backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
+	backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
+
+	scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
+
+	fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
+	fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
+	normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
+#endif
+	if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
+}
+#endif
\ No newline at end of file

--
Gitblit v1.10.0