From 228d3663f871d0e4bdee468572eb80141cb4fe3f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 15 Feb 2014 00:09:07 +0000
Subject: [PATCH] Extracting features from VOC with temp filters

---
 src/tests.c |  457 ++++++++++++++++++++++++++++++++++----------------------
 1 files changed, 275 insertions(+), 182 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 722de1a..47c9787 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -1,4 +1,5 @@
 #include "connected_layer.h"
+//#include "old_conv.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 #include "network.h"
@@ -7,15 +8,18 @@
 #include "data.h"
 #include "matrix.h"
 #include "utils.h"
+#include "mini_blas.h"
 
 #include <time.h>
 #include <stdlib.h>
 #include <stdio.h>
 
+#define _GNU_SOURCE
+#include <fenv.h>
+
 void test_convolve()
 {
-    image dog = load_image("dog.jpg");
-    //show_image_layers(dog, "Dog");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     image kernel = make_random_image(3,3,dog.c);
     image edge = make_image(dog.h, dog.w, 1);
@@ -25,39 +29,45 @@
         convolve(dog, kernel, 1, 0, edge, 1);
     }
     end = clock();
-    printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image_layers(edge, "Test Convolve");
 }
 
+void test_convolve_matrix()
+{
+    image dog = load_image("dog.jpg",300,400);
+    printf("dog channels %d\n", dog.c);
+    
+    int size = 11;
+    int stride = 4;
+    int n = 40;
+    float *filters = make_random_image(size, size, dog.c*n).data;
+
+    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
+    int mh = (size*size*dog.c);
+    float *matrix = calloc(mh*mw, sizeof(float));
+
+    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
+
+
+    int i;
+    clock_t start = clock(), end;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(dog.data,  dog.c,  dog.h,  dog.w,  size,  stride, matrix);
+        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
+    }
+    end = clock();
+    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+    show_image_layers(edge, "Test Convolve");
+    cvWaitKey(0);
+}
+
 void test_color()
 {
-    image dog = load_image("test_color.png");
+    image dog = load_image("test_color.png", 300, 400);
     show_image_layers(dog, "Test Color");
 }
 
-void test_convolutional_layer()
-{
-    srand(0);
-    image dog = load_image("dog.jpg");
-    int i;
-    int n = 3;
-    int stride = 1;
-    int size = 3;
-    convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
-    char buff[256];
-    for(i = 0; i < n; ++i) {
-        sprintf(buff, "Kernel %d", i);
-        show_image(layer.kernels[i], buff);
-    }
-    forward_convolutional_layer(layer, dog.data);
-    
-    image output = get_convolutional_image(layer);
-    maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
-    forward_maxpool_layer(mlayer, layer.output);
-
-    show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
-}
-
 void verify_convolutional_layer()
 {
     srand(0);
@@ -65,11 +75,11 @@
     int n = 1;
     int stride = 1;
     int size = 3;
-    double eps = .00000001;
+    float eps = .00000001;
     image test = make_random_image(5,5, 1);
     convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
     image out = get_convolutional_image(layer);
-    double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
+    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
     
     forward_convolutional_layer(layer, test.data);
     image base = copy_image(out);
@@ -83,19 +93,19 @@
         jacobian[i] = partial.data;
         test.data[i] -= eps;
     }
-    double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
+    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
     image in_delta = make_image(test.h, test.w, test.c);
     image out_delta = get_convolutional_delta(layer);
     for(i = 0; i < out.h*out.w*out.c; ++i){
         out_delta.data[i] = 1;
-        backward_convolutional_layer2(layer, test.data, in_delta.data);
+        backward_convolutional_layer(layer, in_delta.data);
         image partial = copy_image(in_delta);
         jacobian2[i] = partial.data;
         out_delta.data[i] = 0;
     }
     int j;
-    double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
-    double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
+    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
+    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
     for(i = 0; i < test.h*test.w*test.c; ++i){
         for(j =0 ; j < out.h*out.w*out.c; ++j){
             j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
@@ -105,23 +115,22 @@
     }
 
 
-    image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
-    image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
+    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
+    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
     printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
     show_image(mj1, "forward jacobian");
     show_image(mj2, "backward jacobian");
-    
 }
 
 void test_load()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     show_image(dog, "Test Load");
     show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     int n = 3;
     image up = make_image(n*dog.h, n*dog.w, dog.c);
     upsample_image(dog, n, up);
@@ -132,13 +141,13 @@
 void test_rotate()
 {
     int i;
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     clock_t start = clock(), end;
     for(i = 0; i < 1001; ++i){
         rotate_image(dog);
     }
     end = clock();
-    printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
     show_image(dog, "Test Rotate");
 
     image random = make_random_image(3,3,3);
@@ -152,174 +161,166 @@
 void test_parser()
 {
     network net = parse_network_cfg("test_parser.cfg");
-    double input[1];
+    float input[1];
     int count = 0;
         
-    double avgerr = 0;
-    while(1){
-        double v = ((double)rand()/RAND_MAX);
-        double truth = v*v;
+    float avgerr = 0;
+    while(++count < 100000000){
+        float v = ((float)rand()/RAND_MAX);
+        float truth = v*v;
         input[0] = v;
         forward_network(net, input);
-        double *out = get_network_output(net);
-        double *delta = get_network_delta(net);
-        double err = pow((out[0]-truth),2.);
+        float *out = get_network_output(net);
+        float *delta = get_network_delta(net);
+        float err = pow((out[0]-truth),2.);
         avgerr = .99 * avgerr + .01 * err;
-        //if(++count % 100000 == 0) printf("%f\n", avgerr);
-        if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
+        if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
         delta[0] = truth - out[0];
-        learn_network(net, input);
-        update_network(net, .001);
+        backward_network(net, input, &truth);
+        update_network(net, .001,0,0);
     }
 }
 
 void test_data()
 {
     char *labels[] = {"cat","dog"};
-    batch train = random_batch("train_paths.txt", 101,labels, 2);
-    show_image(train.images[0], "Test Data Loading");
-    show_image(train.images[100], "Test Data Loading");
-    show_image(train.images[10], "Test Data Loading");
-    free_batch(train);
+    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
+    free_data(train);
 }
 
 void test_full()
 {
     network net = parse_network_cfg("full.cfg");
-    srand(0);
-    int i = 0;
+    srand(2222222);
+    int i = 800;
     char *labels[] = {"cat","dog"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
     while(i++ < 1000 || 1){
-        batch train = random_batch("train_paths.txt", 1000, labels, 2);
-        train_network_batch(net, train);
-        free_batch(train);
-        printf("Round %d\n", i);
+        visualize_network(net);
+        cvWaitKey(100);
+        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,train.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        //scale_data_rows(train, 1./255.);
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "backup_%d.cfg", i);
+            //save_network(net, buff);
+        }
+        //lr *= .99;
     }
 }
 
-double error_network(network net, matrix m, double *truth)
-{
-    int i;
-    int correct = 0;
-    for(i = 0; i < m.rows; ++i){
-        forward_network(net, m.vals[i]);
-        double *out = get_network_output(net);
-        double err = truth[i] - out[0];
-        if(fabs(err) < .5) ++correct;
-    }
-    return (double)correct/m.rows;
-}
-
-double **one_hot(double *a, int n, int k)
-{
-    int i;
-    double **t = calloc(n, sizeof(double*));
-    for(i = 0; i < n; ++i){
-        t[i] = calloc(k, sizeof(double));
-        int index = (int)a[i];
-        t[i][index] = 1;
-    }
-    return t;
-}
-
 void test_nist()
 {
+    srand(444444);
+    srand(888888);
     network net = parse_network_cfg("nist.cfg");
-    matrix m = csv_to_matrix("images/nist_train.csv");
-    matrix ho = hold_out_matrix(&m, 3000);
-    double *truth_1d = pop_column(&m, 0);
-    double **truth = one_hot(truth_1d, m.rows, 10);
-    double *ho_truth_1d = pop_column(&ho, 0);
-    double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10);
-    int i,j;
-    clock_t start = clock(), end;
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
+    normalize_data_rows(train);
+    normalize_data_rows(test);
+    //randomize_data(train);
     int count = 0;
-    double lr = .0001;
-    while(++count <= 3000000){
-        //lr *= .99;
-        int index = 0;
-        int correct = 0;
-        for(i = 0; i < 1000; ++i){
-            index = rand()%m.rows;
-            normalize_array(m.vals[index], 28*28);
-            forward_network(net, m.vals[index]);
-            double *out = get_network_output(net);
-            double *delta = get_network_delta(net);
-            int max_i = 0;
-            double max = out[0];
-            for(j = 0; j < 10; ++j){
-                delta[j] = truth[index][j]-out[j];
-                if(out[j] > max){
-                    max = out[j];
-                    max_i = j;
-                }
-            }
-            if(truth[index][max_i]) ++correct;
-            learn_network(net, m.vals[index]);
-            update_network(net, lr);
+    float lr = .0005;
+    float momentum = .9;
+    float decay = 0.001;
+    clock_t start = clock(), end;
+    while(++count <= 100){
+        //visualize_network(net);
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
+        end = clock();
+        printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
+        start=end;
+        //cvWaitKey(100);
+        //lr /= 2; 
+        if(count%5 == 0){
+            float train_acc = network_accuracy(net, train);
+            fprintf(stderr, "\nTRAIN: %f\n", train_acc);
+            float test_acc = network_accuracy(net, test);
+            fprintf(stderr, "TEST: %f\n\n", test_acc);
+            printf("%d, %f, %f\n", count, train_acc, test_acc);
+            //lr *= .5;
         }
-        print_network(net);
-        image input = double_to_image(28,28,1, m.vals[index]);
-        show_image(input, "Input");
-        image o = get_network_image(net);
-        show_image_collapsed(o, "Output");
-        visualize_network(net);
-        cvWaitKey(100);
-        //double test_acc = error_network(net, m, truth);
-        //double valid_acc = error_network(net, ho, ho_truth);
-        //printf("%f, %f\n", test_acc, valid_acc);
-        fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr);
-        //if(valid_acc > .70) break;
     }
-    end = clock();
-    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
 }
 
-void test_kernel_update()
+void test_ensemble()
 {
-    srand(0);
-    double delta[] = {.1};
-    double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5};
-    double kernel[] = {1,2,3,4,5,6,7,8,9};
-    convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY);
-    layer.kernels[0].data = kernel;
-    layer.delta = delta;
-    learn_convolutional_layer(layer, input);
-    print_image(layer.kernels[0]);
-    print_image(get_convolutional_delta(layer));
-    print_image(layer.kernel_updates[0]);
-    
+    int i;
+    srand(888888);
+    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    normalize_data_rows(d);
+    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+    normalize_data_rows(test);
+    data train = d;
+    //   data *split = split_data(d, 1, 10);
+    //   data train = split[0];
+    //   data test = split[1];
+    matrix prediction = make_matrix(test.y.rows, test.y.cols);
+    int n = 30;
+    for(i = 0; i < n; ++i){
+        int count = 0;
+        float lr = .0005;
+        float momentum = .9;
+        float decay = .01;
+        network net = parse_network_cfg("nist.cfg");
+        while(++count <= 15){
+            float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
+            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+            lr /= 2; 
+        }
+        matrix partial = network_predict_data(net, test);
+        float acc = matrix_accuracy(test.y, partial);
+        printf("Model Accuracy: %lf\n", acc);
+        matrix_add_matrix(partial, prediction);
+        acc = matrix_accuracy(test.y, prediction);
+        printf("Current Ensemble Accuracy: %lf\n", acc);
+        free_matrix(partial);
+    }
+    float acc = matrix_accuracy(test.y, prediction);
+    printf("Full Ensemble Accuracy: %lf\n", acc);
 }
 
 void test_random_classify()
 {
     network net = parse_network_cfg("connected.cfg");
     matrix m = csv_to_matrix("train.csv");
-    matrix ho = hold_out_matrix(&m, 2500);
-    double *truth = pop_column(&m, 0);
-    double *ho_truth = pop_column(&ho, 0);
+    //matrix ho = hold_out_matrix(&m, 2500);
+    float *truth = pop_column(&m, 0);
+    //float *ho_truth = pop_column(&ho, 0);
     int i;
     clock_t start = clock(), end;
     int count = 0;
     while(++count <= 300){
         for(i = 0; i < m.rows; ++i){
             int index = rand()%m.rows;
-            //image p = double_to_image(1690,1,1,m.vals[index]);
+            //image p = float_to_image(1690,1,1,m.vals[index]);
             //normalize_image(p);
             forward_network(net, m.vals[index]);
-            double *out = get_network_output(net);
-            double *delta = get_network_delta(net);
+            float *out = get_network_output(net);
+            float *delta = get_network_delta(net);
             //printf("%f\n", out[0]);
             delta[0] = truth[index] - out[0];
-           // printf("%f\n", delta[0]);
+            // printf("%f\n", delta[0]);
             //printf("%f %f\n", truth[index], out[0]);
-            learn_network(net, m.vals[index]);
-            update_network(net, .00001);
+            //backward_network(net, m.vals[index], );
+            update_network(net, .00001, 0,0);
         }
-        double test_acc = error_network(net, m, truth);
-        double valid_acc = error_network(net, ho, ho_truth);
-        printf("%f, %f\n", test_acc, valid_acc);
-        fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
+        //float test_acc = error_network(net, m, truth);
+        //float valid_acc = error_network(net, ho, ho_truth);
+        //printf("%f, %f\n", test_acc, valid_acc);
+        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
         //if(valid_acc > .70) break;
     }
     end = clock();
@@ -328,42 +329,134 @@
     truth = pop_column(&test, 0);
     for(i = 0; i < test.rows; ++i){
         forward_network(net, test.vals[i]);
-        double *out = get_network_output(net);
+        float *out = get_network_output(net);
         if(fabs(out[0]) < .5) fprintf(fp, "0\n");
         else fprintf(fp, "1\n");
     }
     fclose(fp);
-    printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
+    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
 }
 
-void test_random_preprocess()
+void test_split()
 {
-    FILE *file = fopen("train.csv", "w");
-    char *labels[] = {"cat","dog"};
-    int i,j,k;
-    srand(0);
-    network net = parse_network_cfg("convolutional.cfg");
-    for(i = 0; i < 100; ++i){
-        printf("%d\n", i);
-        batch part = get_batch("train_paths.txt", i, 100, labels, 2);
-        for(j = 0; j < part.n; ++j){
-            forward_network(net, part.images[j].data);
-            double *out = get_network_output(net);
-            fprintf(file, "%f", part.truth[j][0]);
-            for(k = 0; k < get_network_output_size(net); ++k){
-                fprintf(file, ",%f", out[k]);
-            }
-            fprintf(file, "\n");
+    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+    data *split = split_data(train, 0, 13);
+    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
+}
+
+void test_im2row()
+{
+    int h = 20;
+    int w = 20;
+    int c = 3;
+    int stride = 1;
+    int size = 11;
+    image test = make_random_image(h,w,c);
+    int mc = 1;
+    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
+    int mh = (size*size*c);
+    int msize = mc*mw*mh;
+    float *matrix = calloc(msize, sizeof(float));
+    int i;
+    for(i = 0; i < 1000; ++i){
+        im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
+        //image render = float_to_image(mh, mw, mc, matrix);
+    }
+}
+
+void train_VOC()
+{
+    network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg");
+    srand(2222222);
+    int i = 20;
+    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(i++ < 1000 || 1){
+        data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
+
+        image im = float_to_image(300, 400, 3,train.X.vals[0]);
+        show_image(im, "input");
+        visualize_network(net);
+        cvWaitKey(100);
+
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i);
+            save_network(net, buff);
         }
-        free_batch(part);
+        //lr *= .99;
+    }
+}
+
+void features_VOC()
+{
+    int i,j;
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    char *path_file = "images/VOC2012/all_paths.txt";
+    char *out_dir = "voc_features/";
+    list *paths = get_paths(path_file);
+    node *n = paths->front;
+    while(n){
+        char *path = (char *)n->val;
+        char buff[1024];
+        sprintf(buff, "%s%s.txt",out_dir, path);
+        FILE *fp = fopen(buff, "w");
+        if(fp == 0) file_error(buff);
+
+        IplImage* src = 0;
+        if( (src = cvLoadImage(path,-1)) == 0 )
+        {
+            printf("Cannot load file image %s\n", path);
+            exit(0);
+        }
+
+        for(i = 0; i < 10; ++i){
+            int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!!
+            int h = (int)((double)w/src->width * src->height);
+            IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+            cvResize(src, sized, CV_INTER_LINEAR);
+            image im = ipl_to_image(sized);
+            reset_network_size(net, im.h, im.w, im.c);
+            forward_network(net, im.data);
+            free_image(im);
+            image out = get_network_image_layer(net, 5);
+            fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+            for(j = 0; j < out.c*out.h*out.w; ++j){
+                if(j != 0)fprintf(fp, ",");
+                fprintf(fp, "%g", out.data[j]);
+            }
+            fprintf(fp, "\n");
+            out.c = 1;
+            show_image(out, "output");
+            cvWaitKey(10);
+            cvReleaseImage(&sized);
+        }
+        fclose(fp);
+        n = n->next;
     }
 }
 
 int main()
 {
-    //test_kernel_update();
+    //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
+
+    //test_blas();
+    //test_convolve_matrix();
+    //    test_im2row();
+    //test_split();
+    //test_ensemble();
     //test_nist();
-    test_full();
+    //test_full();
+    //train_VOC();
+    features_VOC();
     //test_random_preprocess();
     //test_random_classify();
     //test_parser();
@@ -377,6 +470,6 @@
     //test_convolutional_layer();
     //verify_convolutional_layer();
     //test_color();
-    cvWaitKey(0);
+    //cvWaitKey(0);
     return 0;
 }

--
Gitblit v1.10.0