From 2292d6ff94a17c4e158c168de23cff0f62603dc1 Mon Sep 17 00:00:00 2001
From: SpeedProg <speedprog@googlemail.com>
Date: Thu, 02 Jan 2020 15:56:20 +0000
Subject: [PATCH] update stuff

---
 card_detector.py |  150 ++++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 128 insertions(+), 22 deletions(-)

diff --git a/card_detector.py b/card_detector.py
index 88af74d..5b8bd81 100644
--- a/card_detector.py
+++ b/card_detector.py
@@ -1,26 +1,132 @@
 import cv2
 import numpy as np
-import pandas as pd
+import math
+from screeninfo import get_monitors
+
+"""
+This is the first attempt of identifying MTG cards using only classical computer vision technique.
+Most of the processes are similar to the process used in opencv_dnn.py, but it instead tries to use 
+Hough transformation to identify straight edges of the card.
+However, there were difficulties trying to associate multiple edges into a rectangle, as some of them 
+either didn't show up or was too short to intersect.
+There were also no method to dynamically adjust various threshold, even finding all the edges were
+very conditional.
+"""
+
+def detect_a_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200,
+                  min_line_length=None, max_line_gap=None, debug=False):
+    dim_img = (len(img[0]), len(img)) # (width, height)
+    # Intermediate variables
+
+    # Default values
+    if blur_radius is None:
+        blur_radius = math.floor(min(dim_img) / 100 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
+    if dilate_radius is None:
+        dilate_radius = math.floor(min(dim_img) / 67 + 0.5)
+    if min_line_length is None:
+        min_line_length = min(dim_img) / 10
+    if max_line_gap is None:
+        max_line_gap = min(dim_img) / 10
+
+    thresh_radius = math.floor(min(dim_img) / 20 + 0.5) // 2 * 2 + 1  # Rounded to the nearest odd
+
+    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
+    # Median blur better removes background textures than Gaussian blur
+    img_blur = cv2.medianBlur(img_gray, blur_radius)
+    # Truncate the bright area while detecting the border
+    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
+                                       cv2.THRESH_BINARY_INV, thresh_radius, 20)
+    #_, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
+
+    # Dilate the image to emphasize thick borders around the card
+    kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
+    #img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
+    img_dilate = cv2.erode(img_thresh, kernel_dilate, iterations=1)
+
+    img_contour = img_dilate.copy()
+    _, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
+    img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
+    img_contour = cv2.drawContours(img_contour, contours, -1, (128, 128, 128), 1)
+    card_found = contours is not None
+    print(len(contours))
+    print([len(contour) for contour in contours])
+
+    # find the biggest area
+    c = max(contours, key=cv2.contourArea)
+
+    x, y, w, h = cv2.boundingRect(c)
+    # draw the book contour (in green)
+    img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
+
+    # Canny edge - low minimum hysteresis to detect glowed area,
+    # and high maximum hysteresis to compensate for high false positives.
+    img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
+    #img_canny = img_dilate
+    # Apply Hough transformation to detect the edges
+    detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=60,
+                                     minLineLength=min_line_length,
+                                     maxLineGap=max_line_gap)
+    card_found = detected_lines is not None
+    print(len(detected_lines))
+
+    if card_found:
+        if debug:
+            img_hough = cv2.cvtColor(img_dilate.copy(), cv2.COLOR_GRAY2BGR)
+            for line in detected_lines:
+                x1, y1, x2, y2 = line[0]
+                cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
+    elif not debug:
+        print('Hough couldn\'t find any lines')
+
+    # Debug: display intermediate results from various steps
+    if debug:
+        img_blank = np.zeros((len(img), len(img[0]), 3), np.uint8)
+        img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
+        img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
+        #img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
+        if not card_found:
+            img_hough = img_blank
+
+        # Append all images together
+        img_row_1 = np.concatenate((img, img_thresh), axis=1)
+        img_row_2 = np.concatenate((img_contour, img_hough), axis=1)
+        img_result = np.concatenate((img_row_1, img_row_2), axis=0)
+
+        # Resize the final image to fit into the main monitor's resolution
+        screen_size = get_monitors()[0]
+        resize_ratio = max(len(img_result[0]) / screen_size.width, len(img_result) / screen_size.height, 1)
+        img_result = cv2.resize(img_result, (int(len(img_result[0]) // resize_ratio),
+                                             int(len(img_result) // resize_ratio)))
+        cv2.imshow('Result', img_result)
+        cv2.waitKey(0)
+
+    # TODO: output meaningful data
+    return card_found
+
+def main():
+    img_test = cv2.imread('data/li38_handOfCards.jpg')
+    card_found = detect_a_card(img_test,
+                               #dilate_radius=5,
+                               #thresh_val=100,
+                               #min_hyst=40,
+                               #max_hyst=160,
+                               #min_line_length=50,
+                               #max_line_gap=100,
+                               debug=True)
+    if card_found:
+        return
+    return
+    for dilate_radius in range(1, 6):
+        for min_hyst in range(50, 91, 10):
+            for max_hyst in range(180, 119, -20):
+                print('dilate_radius=%d, min_hyst=%d, max_hyst=%d: ' % (dilate_radius, min_hyst, max_hyst),
+                      end='', flush=True)
+                card_found = detect_a_card(img_test, dilate_radius=dilate_radius,
+                                           min_hyst=min_hyst, max_hyst=max_hyst, debug=True)
+                if card_found:
+                    print('Card found')
+                else:
+                    print('Not found')
 
 if __name__ == '__main__':
-    #img_test = cv2.imread('data/rtr-174-jarad-golgari-lich-lord.jpg')
-    #img_test = cv2.imread('data/cn2-78-queen-marchesa.png')
-    #img_test = cv2.imread('data/c16-143-burgeoning.png')
-    #img_test = cv2.imread('data/handOfCards.jpg')
-    img_test = cv2.imread('data/pro_tour_side.png')
-    img_gray = cv2.cvtColor(img_test, cv2.COLOR_BGR2GRAY)
-    _, img_thresh = cv2.threshold(img_gray, 80, 255, cv2.THRESH_BINARY)
-    #cv2.imshow('original', img_test)
-    cv2.imshow('threshold', img_thresh)
-
-    kernel = np.ones((4, 4), np.uint8)
-    img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
-    #img_erode = cv2.erode(img_thresh, kernel, iterations=1)
-    #img_open = cv2.morphologyEx(img_thresh, cv2.MORPH_OPEN, kernel)
-    img_close = cv2.morphologyEx(img_thresh, cv2.MORPH_CLOSE, kernel)
-    cv2.imshow('dilated', img_dilate)
-    #cv2.imshow('eroded', img_erode)
-    #cv2.imshow('opened', img_open)
-    #cv2.imshow('closed', img_close)
-
-    cv2.waitKey(0)
+    main()

--
Gitblit v1.10.0