From 22bf10984cb7940e84db4f086ecbc25d9d5d64b5 Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Wed, 17 Jan 2018 23:19:34 +0000
Subject: [PATCH] .circleci/config.yml added make clean

---
 src/normalization_layer.c |  196 +++++++++++++++++++++++++++++++-----------------
 1 files changed, 125 insertions(+), 71 deletions(-)

diff --git a/src/normalization_layer.c b/src/normalization_layer.c
index 93c2ad9..069a079 100644
--- a/src/normalization_layer.c
+++ b/src/normalization_layer.c
@@ -1,96 +1,150 @@
 #include "normalization_layer.h"
+#include "blas.h"
 #include <stdio.h>
 
-image get_normalization_image(normalization_layer layer)
+layer make_normalization_layer(int batch, int w, int h, int c, int size, float alpha, float beta, float kappa)
 {
-    int h = layer.h;
-    int w = layer.w;
-    int c = layer.c;
-    return float_to_image(w,h,c,layer.output);
-}
+    fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", w,h,c,size);
+    layer layer = {0};
+    layer.type = NORMALIZATION;
+    layer.batch = batch;
+    layer.h = layer.out_h = h;
+    layer.w = layer.out_w = w;
+    layer.c = layer.out_c = c;
+    layer.kappa = kappa;
+    layer.size = size;
+    layer.alpha = alpha;
+    layer.beta = beta;
+    layer.output = calloc(h * w * c * batch, sizeof(float));
+    layer.delta = calloc(h * w * c * batch, sizeof(float));
+    layer.squared = calloc(h * w * c * batch, sizeof(float));
+    layer.norms = calloc(h * w * c * batch, sizeof(float));
+    layer.inputs = w*h*c;
+    layer.outputs = layer.inputs;
 
-image get_normalization_delta(normalization_layer layer)
-{
-    int h = layer.h;
-    int w = layer.w;
-    int c = layer.c;
-    return float_to_image(w,h,c,layer.delta);
-}
+    layer.forward = forward_normalization_layer;
+    layer.backward = backward_normalization_layer;
+    #ifdef GPU
+    layer.forward_gpu = forward_normalization_layer_gpu;
+    layer.backward_gpu = backward_normalization_layer_gpu;
 
-normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
-{
-    fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
-    normalization_layer *layer = calloc(1, sizeof(normalization_layer));
-    layer->batch = batch;
-    layer->h = h;
-    layer->w = w;
-    layer->c = c;
-    layer->kappa = kappa;
-    layer->size = size;
-    layer->alpha = alpha;
-    layer->beta = beta;
-    layer->output = calloc(h * w * c * batch, sizeof(float));
-    layer->delta = calloc(h * w * c * batch, sizeof(float));
-    layer->sums = calloc(h*w, sizeof(float));
+    layer.output_gpu =  cuda_make_array(layer.output, h * w * c * batch);
+    layer.delta_gpu =   cuda_make_array(layer.delta, h * w * c * batch);
+    layer.squared_gpu = cuda_make_array(layer.squared, h * w * c * batch);
+    layer.norms_gpu =   cuda_make_array(layer.norms, h * w * c * batch);
+    #endif
     return layer;
 }
 
-void resize_normalization_layer(normalization_layer *layer, int h, int w)
+void resize_normalization_layer(layer *layer, int w, int h)
 {
+    int c = layer->c;
+    int batch = layer->batch;
     layer->h = h;
     layer->w = w;
-    layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
-    layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
-    layer->sums = realloc(layer->sums, h*w * sizeof(float));
+    layer->out_h = h;
+    layer->out_w = w;
+    layer->inputs = w*h*c;
+    layer->outputs = layer->inputs;
+    layer->output = realloc(layer->output, h * w * c * batch * sizeof(float));
+    layer->delta = realloc(layer->delta, h * w * c * batch * sizeof(float));
+    layer->squared = realloc(layer->squared, h * w * c * batch * sizeof(float));
+    layer->norms = realloc(layer->norms, h * w * c * batch * sizeof(float));
+#ifdef GPU
+    cuda_free(layer->output_gpu);
+    cuda_free(layer->delta_gpu); 
+    cuda_free(layer->squared_gpu); 
+    cuda_free(layer->norms_gpu);   
+    layer->output_gpu =  cuda_make_array(layer->output, h * w * c * batch);
+    layer->delta_gpu =   cuda_make_array(layer->delta, h * w * c * batch);
+    layer->squared_gpu = cuda_make_array(layer->squared, h * w * c * batch);
+    layer->norms_gpu =   cuda_make_array(layer->norms, h * w * c * batch);
+#endif
 }
 
-void add_square_array(float *src, float *dest, int n)
+void forward_normalization_layer(const layer layer, network_state state)
 {
-    int i;
-    for(i = 0; i < n; ++i){
-        dest[i] += src[i]*src[i];
-    }
-}
-void sub_square_array(float *src, float *dest, int n)
-{
-    int i;
-    for(i = 0; i < n; ++i){
-        dest[i] -= src[i]*src[i];
-    }
-}
+    int k,b;
+    int w = layer.w;
+    int h = layer.h;
+    int c = layer.c;
+    scal_cpu(w*h*c*layer.batch, 0, layer.squared, 1);
 
-void forward_normalization_layer(const normalization_layer layer, network_state state)
-{
-    int i,j,k;
-    memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
-    int imsize = layer.h*layer.w;
-    for(j = 0; j < layer.size/2; ++j){
-        if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
-    }
-    for(k = 0; k < layer.c; ++k){
-        int next = k+layer.size/2;
-        int prev = k-layer.size/2-1;
-        if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
-        if(prev > 0)       sub_square_array(state.input+prev*imsize, layer.sums, imsize);
-        for(i = 0; i < imsize; ++i){
-            layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
+    for(b = 0; b < layer.batch; ++b){
+        float *squared = layer.squared + w*h*c*b;
+        float *norms   = layer.norms + w*h*c*b;
+        float *input   = state.input + w*h*c*b;
+        pow_cpu(w*h*c, 2, input, 1, squared, 1);
+
+        const_cpu(w*h, layer.kappa, norms, 1);
+        for(k = 0; k < layer.size/2; ++k){
+            axpy_cpu(w*h, layer.alpha, squared + w*h*k, 1, norms, 1);
+        }
+
+        for(k = 1; k < layer.c; ++k){
+            copy_cpu(w*h, norms + w*h*(k-1), 1, norms + w*h*k, 1);
+            int prev = k - ((layer.size-1)/2) - 1;
+            int next = k + (layer.size/2);
+            if(prev >= 0)      axpy_cpu(w*h, -layer.alpha, squared + w*h*prev, 1, norms + w*h*k, 1);
+            if(next < layer.c) axpy_cpu(w*h,  layer.alpha, squared + w*h*next, 1, norms + w*h*k, 1);
         }
     }
+    pow_cpu(w*h*c*layer.batch, -layer.beta, layer.norms, 1, layer.output, 1);
+    mul_cpu(w*h*c*layer.batch, state.input, 1, layer.output, 1);
 }
 
-void backward_normalization_layer(const normalization_layer layer, network_state state)
+void backward_normalization_layer(const layer layer, network_state state)
 {
-    // TODO!
-    // OR NOT TODO!!
+    // TODO This is approximate ;-)
+    // Also this should add in to delta instead of overwritting.
+
+    int w = layer.w;
+    int h = layer.h;
+    int c = layer.c;
+    pow_cpu(w*h*c*layer.batch, -layer.beta, layer.norms, 1, state.delta, 1);
+    mul_cpu(w*h*c*layer.batch, layer.delta, 1, state.delta, 1);
 }
 
-void visualize_normalization_layer(normalization_layer layer, char *window)
+#ifdef GPU
+void forward_normalization_layer_gpu(const layer layer, network_state state)
 {
-    image delta = get_normalization_image(layer);
-    image dc = collapse_image_layers(delta, 1);
-    char buff[256];
-    sprintf(buff, "%s: Output", window);
-    show_image(dc, buff);
-    save_image(dc, buff);
-    free_image(dc);
+    int k,b;
+    int w = layer.w;
+    int h = layer.h;
+    int c = layer.c;
+    scal_ongpu(w*h*c*layer.batch, 0, layer.squared_gpu, 1);
+
+    for(b = 0; b < layer.batch; ++b){
+        float *squared = layer.squared_gpu + w*h*c*b;
+        float *norms   = layer.norms_gpu + w*h*c*b;
+        float *input   = state.input + w*h*c*b;
+        pow_ongpu(w*h*c, 2, input, 1, squared, 1);
+
+        const_ongpu(w*h, layer.kappa, norms, 1);
+        for(k = 0; k < layer.size/2; ++k){
+            axpy_ongpu(w*h, layer.alpha, squared + w*h*k, 1, norms, 1);
+        }
+
+        for(k = 1; k < layer.c; ++k){
+            copy_ongpu(w*h, norms + w*h*(k-1), 1, norms + w*h*k, 1);
+            int prev = k - ((layer.size-1)/2) - 1;
+            int next = k + (layer.size/2);
+            if(prev >= 0)      axpy_ongpu(w*h, -layer.alpha, squared + w*h*prev, 1, norms + w*h*k, 1);
+            if(next < layer.c) axpy_ongpu(w*h,  layer.alpha, squared + w*h*next, 1, norms + w*h*k, 1);
+        }
+    }
+    pow_ongpu(w*h*c*layer.batch, -layer.beta, layer.norms_gpu, 1, layer.output_gpu, 1);
+    mul_ongpu(w*h*c*layer.batch, state.input, 1, layer.output_gpu, 1);
 }
+
+void backward_normalization_layer_gpu(const layer layer, network_state state)
+{
+    // TODO This is approximate ;-)
+
+    int w = layer.w;
+    int h = layer.h;
+    int c = layer.c;
+    pow_ongpu(w*h*c*layer.batch, -layer.beta, layer.norms_gpu, 1, state.delta, 1);
+    mul_ongpu(w*h*c*layer.batch, layer.delta_gpu, 1, state.delta, 1);
+}
+#endif

--
Gitblit v1.10.0