From 2313a8eb54d703323279c0fb9b2c9c52d26f0cf9 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 06 Mar 2015 18:49:03 +0000
Subject: [PATCH] Split commands into different files
---
src/detection.c | 200 ++++++
src/utils.h | 1
src/imagenet.c | 180 ++++++
Makefile | 2
src/captcha.c | 120 ++++
src/darknet.c | 882 ----------------------------
src/old.c | 356 +++++++++++
src/utils.c | 16
8 files changed, 887 insertions(+), 870 deletions(-)
diff --git a/Makefile b/Makefile
index 12432b9..3dc564d 100644
--- a/Makefile
+++ b/Makefile
@@ -25,7 +25,7 @@
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
endif
-OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o
+OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif
diff --git a/src/captcha.c b/src/captcha.c
new file mode 100644
index 0000000..c26db68
--- /dev/null
+++ b/src/captcha.c
@@ -0,0 +1,120 @@
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+
+
+void train_captcha(char *cfgfile, char *weightfile)
+{
+ float avg_loss = -1;
+ srand(time(0));
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ int imgs = 1024;
+ int i = net.seen/imgs;
+ list *plist = get_paths("/data/captcha/train.list");
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ clock_t time;
+ while(1){
+ ++i;
+ time=clock();
+ data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
+ translate_data_rows(train, -128);
+ scale_data_rows(train, 1./128);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ net.seen += imgs;
+ if(avg_loss == -1) avg_loss = loss;
+ avg_loss = avg_loss*.9 + loss*.1;
+ printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
+ free_data(train);
+ if(i%100==0){
+ char buff[256];
+ sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+ save_weights(net, buff);
+ }
+ }
+}
+
+
+void validate_captcha(char *cfgfile, char *weightfile)
+{
+ srand(time(0));
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ int imgs = 1000;
+ int numchars = 37;
+ list *plist = get_paths("/data/captcha/valid.base");
+ char **paths = (char **)list_to_array(plist);
+ data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
+ translate_data_rows(valid, -128);
+ scale_data_rows(valid, 1./128);
+ matrix pred = network_predict_data(net, valid);
+ int i, k;
+ int correct = 0;
+ int total = 0;
+ int accuracy = 0;
+ for(i = 0; i < imgs; ++i){
+ int allcorrect = 1;
+ for(k = 0; k < 10; ++k){
+ char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
+ char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
+ if (truth != prediction) allcorrect=0;
+ if (truth != '.' && truth == prediction) ++correct;
+ if (truth != '.' || truth != prediction) ++total;
+ }
+ accuracy += allcorrect;
+ }
+ printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
+ free_data(valid);
+}
+
+void test_captcha(char *cfgfile, char *weightfile)
+{
+ setbuf(stdout, NULL);
+ srand(time(0));
+ //char *base = basecfg(cfgfile);
+ //printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ set_batch_network(&net, 1);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ char filename[256];
+ while(1){
+ //printf("Enter filename: ");
+ fgets(filename, 256, stdin);
+ strtok(filename, "\n");
+ image im = load_image_color(filename, 60, 200);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ float *X = im.data;
+ float *predictions = network_predict(net, X);
+ print_letters(predictions, 10);
+ free_image(im);
+ }
+}
+void run_captcha(int argc, char **argv)
+{
+ if(argc < 4){
+ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+ return;
+ }
+
+ char *cfg = argv[3];
+ char *weights = (argc > 4) ? argv[4] : 0;
+ if(0==strcmp(argv[2], "test")) test_captcha(cfg, weights);
+ else if(0==strcmp(argv[2], "train")) train_captcha(cfg, weights);
+ else if(0==strcmp(argv[2], "valid")) validate_captcha(cfg, weights);
+}
+
diff --git a/src/darknet.c b/src/darknet.c
index 36934d7..3794f79 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -1,246 +1,17 @@
-#include "connected_layer.h"
-#include "convolutional_layer.h"
-#include "maxpool_layer.h"
-#include "network.h"
-#include "image.h"
-#include "parser.h"
-#include "data.h"
-#include "matrix.h"
-#include "utils.h"
-#include "blas.h"
-#include "matrix.h"
-#include "server.h"
-
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
+#include "parser.h"
+#include "utils.h"
+#include "cuda.h"
+
#define _GNU_SOURCE
#include <fenv.h>
-void test_load()
-{
- image dog = load_image("dog.jpg", 300, 400);
- show_image(dog, "Test Load");
- show_image_layers(dog, "Test Load");
-}
-
-void test_parser()
-{
- network net = parse_network_cfg("cfg/trained_imagenet.cfg");
- save_network(net, "cfg/trained_imagenet_smaller.cfg");
-}
-
-char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-#define AMNT 3
-void draw_detection(image im, float *box, int side)
-{
- int classes = 20;
- int elems = 4+classes;
- int j;
- int r, c;
-
- for(r = 0; r < side; ++r){
- for(c = 0; c < side; ++c){
- j = (r*side + c) * elems;
- //printf("%d\n", j);
- //printf("Prob: %f\n", box[j]);
- int class = max_index(box+j, classes);
- if(box[j+class] > .02 || 1){
- //int z;
- //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
- printf("%f %s\n", box[j+class], class_names[class]);
- float red = get_color(0,class,classes);
- float green = get_color(1,class,classes);
- float blue = get_color(2,class,classes);
-
- j += classes;
- int d = im.w/side;
- int y = r*d+box[j]*d;
- int x = c*d+box[j+1]*d;
- int h = box[j+2]*im.h;
- int w = box[j+3]*im.w;
- draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
- }
- }
- }
- //printf("Done\n");
- show_image(im, "box");
- cvWaitKey(0);
-}
-
-char *basename(char *cfgfile)
-{
- char *c = cfgfile;
- char *next;
- while((next = strchr(c, '/')))
- {
- c = next+1;
- }
- c = copy_string(c);
- next = strchr(c, '_');
- if (next) *next = 0;
- next = strchr(c, '.');
- if (next) *next = 0;
- return c;
-}
-
-void train_detection_net(char *cfgfile, char *weightfile)
-{
- char *base = basename(cfgfile);
- printf("%s\n", base);
- float avg_loss = 1;
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 128;
- srand(time(0));
- //srand(23410);
- int i = net.seen/imgs;
- list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- data train, buffer;
- int im_dim = 512;
- int jitter = 64;
- int classes = 21;
- pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
- clock_t time;
- while(1){
- i += 1;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
-
- /*
- image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
- draw_detection(im, train.y.vals[0], 7);
- show_image(im, "truth");
- cvWaitKey(0);
- */
-
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- net.seen += imgs;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- if(i%100==0){
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
- save_weights(net, buff);
- }
- free_data(train);
- }
-}
-
-void validate_detection_net(char *cfgfile, char *weightfile)
-{
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- srand(time(0));
-
- list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
- char **paths = (char **)list_to_array(plist);
- int num_output = 1225;
- int im_size = 448;
- int classes = 21;
-
- int m = plist->size;
- int i = 0;
- int splits = 100;
- int num = (i+1)*m/splits - i*m/splits;
-
- fprintf(stderr, "%d\n", m);
- data val, buffer;
- pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
- clock_t time;
- for(i = 1; i <= splits; ++i){
- time=clock();
- pthread_join(load_thread, 0);
- val = buffer;
-
- num = (i+1)*m/splits - i*m/splits;
- char **part = paths+(i*m/splits);
- if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
-
- fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
- matrix pred = network_predict_data(net, val);
- int j, k, class;
- for(j = 0; j < pred.rows; ++j){
- for(k = 0; k < pred.cols; k += classes+4){
-
- /*
- int z;
- for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
- printf("\n");
- */
-
- //if (pred.vals[j][k] > .001){
- for(class = 0; class < classes-1; ++class){
- int index = (k)/(classes+4);
- int r = index/7;
- int c = index%7;
- float y = (r + pred.vals[j][k+0+classes])/7.;
- float x = (c + pred.vals[j][k+1+classes])/7.;
- float h = pred.vals[j][k+2+classes];
- float w = pred.vals[j][k+3+classes];
- printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
- }
- //}
- }
- }
-
- time=clock();
- free_data(val);
- }
-}
-/*
-
- void train_imagenet_distributed(char *address)
- {
- float avg_loss = 1;
- srand(time(0));
- network net = parse_network_cfg("cfg/net.cfg");
- set_learning_network(&net, 0, 1, 0);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = net.batch;
- int i = 0;
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- data train, buffer;
- pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
- while(1){
- i += 1;
-
- time=clock();
- client_update(net, address);
- printf("Updated: %lf seconds\n", sec(clock()-time));
-
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- normalize_data_rows(train);
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
-
- float loss = train_network(net, train);
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
- free_data(train);
- }
- }
- */
+extern void run_imagenet(int argc, char **argv);
+extern void run_detection(int argc, char **argv);
+extern void run_captcha(int argc, char **argv);
void convert(char *cfgfile, char *outfile, char *weightfile)
{
@@ -251,602 +22,6 @@
save_network(net, outfile);
}
-void train_captcha(char *cfgfile, char *weightfile)
-{
- float avg_loss = -1;
- srand(time(0));
- char *base = basename(cfgfile);
- printf("%s\n", base);
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 1024;
- int i = net.seen/imgs;
- list *plist = get_paths("/data/captcha/train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- while(1){
- ++i;
- time=clock();
- data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
- translate_data_rows(train, -128);
- scale_data_rows(train, 1./128);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- net.seen += imgs;
- if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
- free_data(train);
- if(i%100==0){
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
- save_weights(net, buff);
- }
- }
-}
-
-
-void validate_captcha(char *cfgfile, char *weightfile)
-{
- srand(time(0));
- char *base = basename(cfgfile);
- printf("%s\n", base);
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- int imgs = 1000;
- int numchars = 37;
- list *plist = get_paths("/data/captcha/valid.base");
- char **paths = (char **)list_to_array(plist);
- data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
- translate_data_rows(valid, -128);
- scale_data_rows(valid, 1./128);
- matrix pred = network_predict_data(net, valid);
- int i, k;
- int correct = 0;
- int total = 0;
- int accuracy = 0;
- for(i = 0; i < imgs; ++i){
- int allcorrect = 1;
- for(k = 0; k < 10; ++k){
- char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
- char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
- if (truth != prediction) allcorrect=0;
- if (truth != '.' && truth == prediction) ++correct;
- if (truth != '.' || truth != prediction) ++total;
- }
- accuracy += allcorrect;
- }
- printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
- free_data(valid);
-}
-
-void test_captcha(char *cfgfile, char *weightfile)
-{
- setbuf(stdout, NULL);
- srand(time(0));
- char *base = basename(cfgfile);
- //printf("%s\n", base);
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- clock_t time;
- char filename[256];
- while(1){
- //printf("Enter filename: ");
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- time = clock();
- image im = load_image_color(filename, 60, 200);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- float *X = im.data;
- time=clock();
- float *predictions = network_predict(net, X);
- //printf("Predicted in %f\n", sec(clock() - time));
- print_letters(predictions, 10);
- free_image(im);
- }
-}
-
-void train_imagenet(char *cfgfile, char *weightfile)
-{
- float avg_loss = -1;
- srand(time(0));
- char *base = basename(cfgfile);
- printf("%s\n", base);
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = 1024;
- int i = net.seen/imgs;
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- pthread_t load_thread;
- data train;
- data buffer;
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
- while(1){
- ++i;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- net.seen += imgs;
- if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
- free_data(train);
- if(i%100==0){
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
- save_weights(net, buff);
- }
- }
-}
-
-void validate_imagenet(char *filename, char *weightfile)
-{
- int i = 0;
- network net = parse_network_cfg(filename);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- srand(time(0));
-
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
-
- list *plist = get_paths("/data/imagenet/cls.val.list");
- char **paths = (char **)list_to_array(plist);
- int m = plist->size;
- free_list(plist);
-
- clock_t time;
- float avg_acc = 0;
- float avg_top5 = 0;
- int splits = 50;
- int num = (i+1)*m/splits - i*m/splits;
-
- data val, buffer;
- pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
- for(i = 1; i <= splits; ++i){
- time=clock();
-
- pthread_join(load_thread, 0);
- val = buffer;
-
- num = (i+1)*m/splits - i*m/splits;
- char **part = paths+(i*m/splits);
- if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
- printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
-
- time=clock();
- float *acc = network_accuracies(net, val);
- avg_acc += acc[0];
- avg_top5 += acc[1];
- printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
- free_data(val);
- }
-}
-
-void test_detection(char *cfgfile, char *weightfile)
-{
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- int im_size = 448;
- set_batch_network(&net, 1);
- srand(2222222);
- clock_t time;
- char filename[256];
- while(1){
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, im_size, im_size);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
- time=clock();
- float *predictions = network_predict(net, X);
- printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
- draw_detection(im, predictions, 7);
- free_image(im);
- }
-}
-
-void test_init(char *cfgfile)
-{
- gpu_index = -1;
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- srand(2222222);
- int i = 0;
- char *filename = "data/test.jpg";
-
- image im = load_image_color(filename, 256, 256);
- //z_normalize_image(im);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- float *X = im.data;
- forward_network(net, X, 0, 1);
- for(i = 0; i < net.n; ++i){
- if(net.types[i] == CONVOLUTIONAL){
- convolutional_layer layer = *(convolutional_layer *)net.layers[i];
- image output = get_convolutional_image(layer);
- int size = output.h*output.w*output.c;
- float v = variance_array(layer.output, size);
- float m = mean_array(layer.output, size);
- printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
- }
- else if(net.types[i] == CONNECTED){
- connected_layer layer = *(connected_layer *)net.layers[i];
- int size = layer.outputs;
- float v = variance_array(layer.output, size);
- float m = mean_array(layer.output, size);
- printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
- }
- }
- free_image(im);
-}
-void test_dog(char *cfgfile)
-{
- image im = load_image_color("data/dog.jpg", 256, 256);
- translate_image(im, -128);
- print_image(im);
- float *X = im.data;
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- network_predict(net, X);
- image crop = get_network_image_layer(net, 0);
- show_image(crop, "cropped");
- print_image(crop);
- show_image(im, "orig");
- float * inter = get_network_output(net);
- pm(1000, 1, inter);
- cvWaitKey(0);
-}
-
-void test_voc_segment(char *cfgfile, char *weightfile)
-{
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
- while(1){
- char filename[256];
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, 500, 500);
- //resize_network(net, im.h, im.w, im.c);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- //float *predictions = network_predict(net, im.data);
- network_predict(net, im.data);
- free_image(im);
- image output = get_network_image_layer(net, net.n-2);
- show_image(output, "Segment Output");
- cvWaitKey(0);
- }
-}
-
-void test_imagenet(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- set_batch_network(&net, 1);
- //imgs=1;
- srand(2222222);
- int i = 0;
- char **names = get_labels("cfg/shortnames.txt");
- clock_t time;
- char filename[256];
- int indexes[10];
- while(1){
- fgets(filename, 256, stdin);
- strtok(filename, "\n");
- image im = load_image_color(filename, 256, 256);
- translate_image(im, -128);
- scale_image(im, 1/128.);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
- time=clock();
- float *predictions = network_predict(net, X);
- top_predictions(net, 10, indexes);
- printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
- for(i = 0; i < 10; ++i){
- int index = indexes[i];
- printf("%s: %f\n", names[index], predictions[index]);
- }
- free_image(im);
- }
-}
-
-void test_visualize(char *filename)
-{
- network net = parse_network_cfg(filename);
- visualize_network(net);
- cvWaitKey(0);
-}
-
-void test_cifar10(char *cfgfile)
-{
- network net = parse_network_cfg(cfgfile);
- data test = load_cifar10_data("data/cifar10/test_batch.bin");
- clock_t start = clock(), end;
- float test_acc = network_accuracy_multi(net, test, 10);
- end = clock();
- printf("%f in %f Sec\n", test_acc, sec(end-start));
- //visualize_network(net);
- //cvWaitKey(0);
-}
-
-void train_cifar10(char *cfgfile)
-{
- srand(555555);
- srand(time(0));
- network net = parse_network_cfg(cfgfile);
- data test = load_cifar10_data("data/cifar10/test_batch.bin");
- int count = 0;
- int iters = 50000/net.batch;
- data train = load_all_cifar10();
- while(++count <= 10000){
- clock_t time = clock();
- float loss = train_network_sgd(net, train, iters);
-
- if(count%10 == 0){
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
- char buff[256];
- sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
- save_network(net, buff);
- }else{
- printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
- }
-
- }
- free_data(train);
-}
-
-void compare_nist(char *p1,char *p2)
-{
- srand(222222);
- network n1 = parse_network_cfg(p1);
- network n2 = parse_network_cfg(p2);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(test);
- compare_networks(n1, n2, test);
-}
-
-void test_nist(char *path)
-{
- srand(222222);
- network net = parse_network_cfg(path);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(test);
- clock_t start = clock(), end;
- float test_acc = network_accuracy(net, test);
- end = clock();
- printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
-}
-
-void train_nist(char *cfgfile)
-{
- srand(222222);
- // srand(time(0));
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- network net = parse_network_cfg(cfgfile);
- int count = 0;
- int iters = 6000/net.batch + 1;
- while(++count <= 100){
- clock_t start = clock(), end;
- normalize_data_rows(train);
- normalize_data_rows(test);
- float loss = train_network_sgd(net, train, iters);
- float test_acc = 0;
- if(count%1 == 0) test_acc = network_accuracy(net, test);
- end = clock();
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
- }
- free_data(train);
- free_data(test);
- char buff[256];
- sprintf(buff, "%s.trained", cfgfile);
- save_network(net, buff);
-}
-
-/*
- void train_nist_distributed(char *address)
- {
- srand(time(0));
- network net = parse_network_cfg("cfg/nist.client");
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
-//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
-normalize_data_rows(train);
-//normalize_data_rows(test);
-int count = 0;
-int iters = 50000/net.batch;
-iters = 1000/net.batch + 1;
-while(++count <= 2000){
-clock_t start = clock(), end;
-float loss = train_network_sgd(net, train, iters);
-client_update(net, address);
-end = clock();
-//float test_acc = network_accuracy_gpu(net, test);
-//float test_acc = 0;
-printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
-}
-}
- */
-
-void test_ensemble()
-{
- int i;
- srand(888888);
- data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
- normalize_data_rows(d);
- data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
- normalize_data_rows(test);
- data train = d;
- // data *split = split_data(d, 1, 10);
- // data train = split[0];
- // data test = split[1];
- matrix prediction = make_matrix(test.y.rows, test.y.cols);
- int n = 30;
- for(i = 0; i < n; ++i){
- int count = 0;
- float lr = .0005;
- float momentum = .9;
- float decay = .01;
- network net = parse_network_cfg("nist.cfg");
- while(++count <= 15){
- float acc = train_network_sgd(net, train, train.X.rows);
- printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
- lr /= 2;
- }
- matrix partial = network_predict_data(net, test);
- float acc = matrix_topk_accuracy(test.y, partial,1);
- printf("Model Accuracy: %lf\n", acc);
- matrix_add_matrix(partial, prediction);
- acc = matrix_topk_accuracy(test.y, prediction,1);
- printf("Current Ensemble Accuracy: %lf\n", acc);
- free_matrix(partial);
- }
- float acc = matrix_topk_accuracy(test.y, prediction,1);
- printf("Full Ensemble Accuracy: %lf\n", acc);
-}
-
-void visualize_cat()
-{
- network net = parse_network_cfg("cfg/voc_imagenet.cfg");
- image im = load_image_color("data/cat.png", 0, 0);
- printf("Processing %dx%d image\n", im.h, im.w);
- resize_network(net, im.h, im.w, im.c);
- forward_network(net, im.data, 0, 0);
-
- visualize_network(net);
- cvWaitKey(0);
-}
-
-void test_correct_nist()
-{
- network net = parse_network_cfg("cfg/nist_conv.cfg");
- srand(222222);
- net = parse_network_cfg("cfg/nist_conv.cfg");
- data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
- data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
- normalize_data_rows(train);
- normalize_data_rows(test);
- int count = 0;
- int iters = 1000/net.batch;
-
- while(++count <= 5){
- clock_t start = clock(), end;
- float loss = train_network_sgd(net, train, iters);
- end = clock();
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
- }
- save_network(net, "cfg/nist_gpu.cfg");
-
- gpu_index = -1;
- count = 0;
- srand(222222);
- net = parse_network_cfg("cfg/nist_conv.cfg");
- while(++count <= 5){
- clock_t start = clock(), end;
- float loss = train_network_sgd(net, train, iters);
- end = clock();
- float test_acc = network_accuracy(net, test);
- printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
- }
- save_network(net, "cfg/nist_cpu.cfg");
-}
-
-void test_correct_alexnet()
-{
- char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
- list *plist = get_paths("/data/imagenet/cls.train.list");
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- clock_t time;
- int count = 0;
- network net;
-
- srand(222222);
- net = parse_network_cfg("cfg/net.cfg");
- int imgs = net.batch;
-
- count = 0;
- while(++count <= 5){
- time=clock();
- data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
- normalize_data_rows(train);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
- free_data(train);
- }
-
- gpu_index = -1;
- count = 0;
- srand(222222);
- net = parse_network_cfg("cfg/net.cfg");
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- while(++count <= 5){
- time=clock();
- data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
- normalize_data_rows(train);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
- free_data(train);
- }
-}
-
-/*
- void run_server()
- {
- srand(time(0));
- network net = parse_network_cfg("cfg/net.cfg");
- set_batch_network(&net, 1);
- server_update(net);
- }
-
- void test_client()
- {
- network net = parse_network_cfg("cfg/alexnet.client");
- clock_t time=clock();
- client_update(net, "localhost");
- printf("1\n");
- client_update(net, "localhost");
- printf("2\n");
- client_update(net, "localhost");
- printf("3\n");
- printf("Transfered: %lf seconds\n", sec(clock()-time));
- }
- */
-
void del_arg(int argc, char **argv, int index)
{
int i;
@@ -914,44 +89,13 @@
}
#endif
- if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
- else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
- //else if(0==strcmp(argv[1], "server")) run_server();
-
-#ifdef GPU
- else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
-#endif
-
- else if(argc < 3){
- fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
- return 0;
+ if(0==strcmp(argv[1], "imagenet")){
+ run_imagenet(argc, argv);
+ } else if (0 == strcmp(argv[1], "detection")){
+ run_detection(argc, argv);
+ } else if (0 == strcmp(argv[1], "captcha")){
+ run_captcha(argc, argv);
}
- else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
- else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
- else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
- else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
- else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
- else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "captcha")) train_captcha(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "tcaptcha")) test_captcha(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "vcaptcha")) validate_captcha(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
- //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
- else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
- else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
- else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
- else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
- else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2], (argc > 3)? argv[3] : 0);
- else if(argc < 4){
- fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
- return 0;
- }
- else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
- else if(0==strcmp(argv[1], "convert")) convert(argv[2], argv[3], (argc > 4)? argv[4] : 0);
- else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
- fprintf(stderr, "Success!\n");
return 0;
}
diff --git a/src/detection.c b/src/detection.c
new file mode 100644
index 0000000..fa8b38c
--- /dev/null
+++ b/src/detection.c
@@ -0,0 +1,200 @@
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+
+
+char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+#define AMNT 3
+void draw_detection(image im, float *box, int side)
+{
+ int classes = 20;
+ int elems = 4+classes;
+ int j;
+ int r, c;
+
+ for(r = 0; r < side; ++r){
+ for(c = 0; c < side; ++c){
+ j = (r*side + c) * elems;
+ //printf("%d\n", j);
+ //printf("Prob: %f\n", box[j]);
+ int class = max_index(box+j, classes);
+ if(box[j+class] > .02 || 1){
+ //int z;
+ //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
+ printf("%f %s\n", box[j+class], class_names[class]);
+ float red = get_color(0,class,classes);
+ float green = get_color(1,class,classes);
+ float blue = get_color(2,class,classes);
+
+ j += classes;
+ int d = im.w/side;
+ int y = r*d+box[j]*d;
+ int x = c*d+box[j+1]*d;
+ int h = box[j+2]*im.h;
+ int w = box[j+3]*im.w;
+ draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
+ }
+ }
+ }
+ //printf("Done\n");
+ show_image(im, "box");
+ cvWaitKey(0);
+}
+
+void train_detection(char *cfgfile, char *weightfile)
+{
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ float avg_loss = 1;
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ int imgs = 128;
+ srand(time(0));
+ //srand(23410);
+ int i = net.seen/imgs;
+ list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ data train, buffer;
+ int im_dim = 512;
+ int jitter = 64;
+ int classes = 21;
+ pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+ clock_t time;
+ while(1){
+ i += 1;
+ time=clock();
+ pthread_join(load_thread, 0);
+ train = buffer;
+ load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
+
+ /*
+ image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
+ draw_detection(im, train.y.vals[0], 7);
+ show_image(im, "truth");
+ cvWaitKey(0);
+ */
+
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ net.seen += imgs;
+ avg_loss = avg_loss*.9 + loss*.1;
+ printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+ if(i%100==0){
+ char buff[256];
+ sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+ save_weights(net, buff);
+ }
+ free_data(train);
+ }
+}
+
+void validate_detection(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ srand(time(0));
+
+ list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
+ char **paths = (char **)list_to_array(plist);
+ int num_output = 1225;
+ int im_size = 448;
+ int classes = 21;
+
+ int m = plist->size;
+ int i = 0;
+ int splits = 100;
+ int num = (i+1)*m/splits - i*m/splits;
+
+ fprintf(stderr, "%d\n", m);
+ data val, buffer;
+ pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
+ clock_t time;
+ for(i = 1; i <= splits; ++i){
+ time=clock();
+ pthread_join(load_thread, 0);
+ val = buffer;
+
+ num = (i+1)*m/splits - i*m/splits;
+ char **part = paths+(i*m/splits);
+ if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
+
+ fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
+ matrix pred = network_predict_data(net, val);
+ int j, k, class;
+ for(j = 0; j < pred.rows; ++j){
+ for(k = 0; k < pred.cols; k += classes+4){
+
+ /*
+ int z;
+ for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
+ printf("\n");
+ */
+
+ //if (pred.vals[j][k] > .001){
+ for(class = 0; class < classes-1; ++class){
+ int index = (k)/(classes+4);
+ int r = index/7;
+ int c = index%7;
+ float y = (r + pred.vals[j][k+0+classes])/7.;
+ float x = (c + pred.vals[j][k+1+classes])/7.;
+ float h = pred.vals[j][k+2+classes];
+ float w = pred.vals[j][k+3+classes];
+ printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
+ }
+ //}
+ }
+ }
+
+ time=clock();
+ free_data(val);
+ }
+}
+
+void test_detection(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ int im_size = 448;
+ set_batch_network(&net, 1);
+ srand(2222222);
+ clock_t time;
+ char filename[256];
+ while(1){
+ fgets(filename, 256, stdin);
+ strtok(filename, "\n");
+ image im = load_image_color(filename, im_size, im_size);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ printf("%d %d %d\n", im.h, im.w, im.c);
+ float *X = im.data;
+ time=clock();
+ float *predictions = network_predict(net, X);
+ printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+ draw_detection(im, predictions, 7);
+ free_image(im);
+ }
+}
+
+void run_detection(int argc, char **argv)
+{
+ if(argc < 4){
+ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+ return;
+ }
+
+ char *cfg = argv[3];
+ char *weights = (argc > 4) ? argv[4] : 0;
+ if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
+ else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
+ else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
+}
diff --git a/src/imagenet.c b/src/imagenet.c
new file mode 100644
index 0000000..9118c08
--- /dev/null
+++ b/src/imagenet.c
@@ -0,0 +1,180 @@
+#include "network.h"
+#include "utils.h"
+#include "parser.h"
+
+void train_imagenet(char *cfgfile, char *weightfile)
+{
+ float avg_loss = -1;
+ srand(time(0));
+ char *base = basecfg(cfgfile);
+ printf("%s\n", base);
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ int imgs = 1024;
+ int i = net.seen/imgs;
+ char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+ list *plist = get_paths("/data/imagenet/cls.train.list");
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ clock_t time;
+ pthread_t load_thread;
+ data train;
+ data buffer;
+ load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
+ while(1){
+ ++i;
+ time=clock();
+ pthread_join(load_thread, 0);
+ train = buffer;
+ load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ net.seen += imgs;
+ if(avg_loss == -1) avg_loss = loss;
+ avg_loss = avg_loss*.9 + loss*.1;
+ printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
+ free_data(train);
+ if(i%100==0){
+ char buff[256];
+ sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+ save_weights(net, buff);
+ }
+ }
+}
+
+void validate_imagenet(char *filename, char *weightfile)
+{
+ int i = 0;
+ network net = parse_network_cfg(filename);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ srand(time(0));
+
+ char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
+
+ list *plist = get_paths("/data/imagenet/cls.val.list");
+ char **paths = (char **)list_to_array(plist);
+ int m = plist->size;
+ free_list(plist);
+
+ clock_t time;
+ float avg_acc = 0;
+ float avg_top5 = 0;
+ int splits = 50;
+ int num = (i+1)*m/splits - i*m/splits;
+
+ data val, buffer;
+ pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
+ for(i = 1; i <= splits; ++i){
+ time=clock();
+
+ pthread_join(load_thread, 0);
+ val = buffer;
+
+ num = (i+1)*m/splits - i*m/splits;
+ char **part = paths+(i*m/splits);
+ if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
+ printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
+
+ time=clock();
+ float *acc = network_accuracies(net, val);
+ avg_acc += acc[0];
+ avg_top5 += acc[1];
+ printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
+ free_data(val);
+ }
+}
+
+void test_imagenet(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ //imgs=1;
+ srand(2222222);
+ int i = 0;
+ char **names = get_labels("cfg/shortnames.txt");
+ clock_t time;
+ char filename[256];
+ int indexes[10];
+ while(1){
+ fgets(filename, 256, stdin);
+ strtok(filename, "\n");
+ image im = load_image_color(filename, 256, 256);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ printf("%d %d %d\n", im.h, im.w, im.c);
+ float *X = im.data;
+ time=clock();
+ float *predictions = network_predict(net, X);
+ top_predictions(net, 10, indexes);
+ printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+ for(i = 0; i < 10; ++i){
+ int index = indexes[i];
+ printf("%s: %f\n", names[index], predictions[index]);
+ }
+ free_image(im);
+ }
+}
+
+void run_imagenet(int argc, char **argv)
+{
+ if(argc < 4){
+ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+ return;
+ }
+
+ char *cfg = argv[3];
+ char *weights = (argc > 4) ? argv[4] : 0;
+ if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights);
+ else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights);
+ else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights);
+}
+
+/*
+ void train_imagenet_distributed(char *address)
+ {
+ float avg_loss = 1;
+ srand(time(0));
+ network net = parse_network_cfg("cfg/net.cfg");
+ set_learning_network(&net, 0, 1, 0);
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ int imgs = net.batch;
+ int i = 0;
+ char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+ list *plist = get_paths("/data/imagenet/cls.train.list");
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ clock_t time;
+ data train, buffer;
+ pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+ while(1){
+ i += 1;
+
+ time=clock();
+ client_update(net, address);
+ printf("Updated: %lf seconds\n", sec(clock()-time));
+
+ time=clock();
+ pthread_join(load_thread, 0);
+ train = buffer;
+ normalize_data_rows(train);
+ load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+
+ float loss = train_network(net, train);
+ avg_loss = avg_loss*.9 + loss*.1;
+ printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
+ free_data(train);
+ }
+ }
+ */
+
diff --git a/src/old.c b/src/old.c
new file mode 100644
index 0000000..13a9be7
--- /dev/null
+++ b/src/old.c
@@ -0,0 +1,356 @@
+
+void test_load()
+{
+ image dog = load_image("dog.jpg", 300, 400);
+ show_image(dog, "Test Load");
+ show_image_layers(dog, "Test Load");
+}
+
+void test_parser()
+{
+ network net = parse_network_cfg("cfg/trained_imagenet.cfg");
+ save_network(net, "cfg/trained_imagenet_smaller.cfg");
+}
+
+void test_init(char *cfgfile)
+{
+ gpu_index = -1;
+ network net = parse_network_cfg(cfgfile);
+ set_batch_network(&net, 1);
+ srand(2222222);
+ int i = 0;
+ char *filename = "data/test.jpg";
+
+ image im = load_image_color(filename, 256, 256);
+ //z_normalize_image(im);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ float *X = im.data;
+ forward_network(net, X, 0, 1);
+ for(i = 0; i < net.n; ++i){
+ if(net.types[i] == CONVOLUTIONAL){
+ convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+ image output = get_convolutional_image(layer);
+ int size = output.h*output.w*output.c;
+ float v = variance_array(layer.output, size);
+ float m = mean_array(layer.output, size);
+ printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
+ }
+ else if(net.types[i] == CONNECTED){
+ connected_layer layer = *(connected_layer *)net.layers[i];
+ int size = layer.outputs;
+ float v = variance_array(layer.output, size);
+ float m = mean_array(layer.output, size);
+ printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
+ }
+ }
+ free_image(im);
+}
+void test_dog(char *cfgfile)
+{
+ image im = load_image_color("data/dog.jpg", 256, 256);
+ translate_image(im, -128);
+ print_image(im);
+ float *X = im.data;
+ network net = parse_network_cfg(cfgfile);
+ set_batch_network(&net, 1);
+ network_predict(net, X);
+ image crop = get_network_image_layer(net, 0);
+ show_image(crop, "cropped");
+ print_image(crop);
+ show_image(im, "orig");
+ float * inter = get_network_output(net);
+ pm(1000, 1, inter);
+ cvWaitKey(0);
+}
+
+void test_voc_segment(char *cfgfile, char *weightfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ if(weightfile){
+ load_weights(&net, weightfile);
+ }
+ set_batch_network(&net, 1);
+ while(1){
+ char filename[256];
+ fgets(filename, 256, stdin);
+ strtok(filename, "\n");
+ image im = load_image_color(filename, 500, 500);
+ //resize_network(net, im.h, im.w, im.c);
+ translate_image(im, -128);
+ scale_image(im, 1/128.);
+ //float *predictions = network_predict(net, im.data);
+ network_predict(net, im.data);
+ free_image(im);
+ image output = get_network_image_layer(net, net.n-2);
+ show_image(output, "Segment Output");
+ cvWaitKey(0);
+ }
+}
+void test_visualize(char *filename)
+{
+ network net = parse_network_cfg(filename);
+ visualize_network(net);
+ cvWaitKey(0);
+}
+
+void test_cifar10(char *cfgfile)
+{
+ network net = parse_network_cfg(cfgfile);
+ data test = load_cifar10_data("data/cifar10/test_batch.bin");
+ clock_t start = clock(), end;
+ float test_acc = network_accuracy_multi(net, test, 10);
+ end = clock();
+ printf("%f in %f Sec\n", test_acc, sec(end-start));
+ //visualize_network(net);
+ //cvWaitKey(0);
+}
+
+void train_cifar10(char *cfgfile)
+{
+ srand(555555);
+ srand(time(0));
+ network net = parse_network_cfg(cfgfile);
+ data test = load_cifar10_data("data/cifar10/test_batch.bin");
+ int count = 0;
+ int iters = 50000/net.batch;
+ data train = load_all_cifar10();
+ while(++count <= 10000){
+ clock_t time = clock();
+ float loss = train_network_sgd(net, train, iters);
+
+ if(count%10 == 0){
+ float test_acc = network_accuracy(net, test);
+ printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
+ char buff[256];
+ sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
+ save_network(net, buff);
+ }else{
+ printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
+ }
+
+ }
+ free_data(train);
+}
+
+void compare_nist(char *p1,char *p2)
+{
+ srand(222222);
+ network n1 = parse_network_cfg(p1);
+ network n2 = parse_network_cfg(p2);
+ data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+ normalize_data_rows(test);
+ compare_networks(n1, n2, test);
+}
+
+void test_nist(char *path)
+{
+ srand(222222);
+ network net = parse_network_cfg(path);
+ data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+ normalize_data_rows(test);
+ clock_t start = clock(), end;
+ float test_acc = network_accuracy(net, test);
+ end = clock();
+ printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+}
+
+void train_nist(char *cfgfile)
+{
+ srand(222222);
+ // srand(time(0));
+ data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+ data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+ network net = parse_network_cfg(cfgfile);
+ int count = 0;
+ int iters = 6000/net.batch + 1;
+ while(++count <= 100){
+ clock_t start = clock(), end;
+ normalize_data_rows(train);
+ normalize_data_rows(test);
+ float loss = train_network_sgd(net, train, iters);
+ float test_acc = 0;
+ if(count%1 == 0) test_acc = network_accuracy(net, test);
+ end = clock();
+ printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
+ }
+ free_data(train);
+ free_data(test);
+ char buff[256];
+ sprintf(buff, "%s.trained", cfgfile);
+ save_network(net, buff);
+}
+
+/*
+ void train_nist_distributed(char *address)
+ {
+ srand(time(0));
+ network net = parse_network_cfg("cfg/nist.client");
+ data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+normalize_data_rows(train);
+//normalize_data_rows(test);
+int count = 0;
+int iters = 50000/net.batch;
+iters = 1000/net.batch + 1;
+while(++count <= 2000){
+clock_t start = clock(), end;
+float loss = train_network_sgd(net, train, iters);
+client_update(net, address);
+end = clock();
+//float test_acc = network_accuracy_gpu(net, test);
+//float test_acc = 0;
+printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
+}
+}
+ */
+
+void test_ensemble()
+{
+ int i;
+ srand(888888);
+ data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
+ normalize_data_rows(d);
+ data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
+ normalize_data_rows(test);
+ data train = d;
+ // data *split = split_data(d, 1, 10);
+ // data train = split[0];
+ // data test = split[1];
+ matrix prediction = make_matrix(test.y.rows, test.y.cols);
+ int n = 30;
+ for(i = 0; i < n; ++i){
+ int count = 0;
+ float lr = .0005;
+ float momentum = .9;
+ float decay = .01;
+ network net = parse_network_cfg("nist.cfg");
+ while(++count <= 15){
+ float acc = train_network_sgd(net, train, train.X.rows);
+ printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
+ lr /= 2;
+ }
+ matrix partial = network_predict_data(net, test);
+ float acc = matrix_topk_accuracy(test.y, partial,1);
+ printf("Model Accuracy: %lf\n", acc);
+ matrix_add_matrix(partial, prediction);
+ acc = matrix_topk_accuracy(test.y, prediction,1);
+ printf("Current Ensemble Accuracy: %lf\n", acc);
+ free_matrix(partial);
+ }
+ float acc = matrix_topk_accuracy(test.y, prediction,1);
+ printf("Full Ensemble Accuracy: %lf\n", acc);
+}
+
+void visualize_cat()
+{
+ network net = parse_network_cfg("cfg/voc_imagenet.cfg");
+ image im = load_image_color("data/cat.png", 0, 0);
+ printf("Processing %dx%d image\n", im.h, im.w);
+ resize_network(net, im.h, im.w, im.c);
+ forward_network(net, im.data, 0, 0);
+
+ visualize_network(net);
+ cvWaitKey(0);
+}
+
+void test_correct_nist()
+{
+ network net = parse_network_cfg("cfg/nist_conv.cfg");
+ srand(222222);
+ net = parse_network_cfg("cfg/nist_conv.cfg");
+ data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
+ data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
+ normalize_data_rows(train);
+ normalize_data_rows(test);
+ int count = 0;
+ int iters = 1000/net.batch;
+
+ while(++count <= 5){
+ clock_t start = clock(), end;
+ float loss = train_network_sgd(net, train, iters);
+ end = clock();
+ float test_acc = network_accuracy(net, test);
+ printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+ }
+ save_network(net, "cfg/nist_gpu.cfg");
+
+ gpu_index = -1;
+ count = 0;
+ srand(222222);
+ net = parse_network_cfg("cfg/nist_conv.cfg");
+ while(++count <= 5){
+ clock_t start = clock(), end;
+ float loss = train_network_sgd(net, train, iters);
+ end = clock();
+ float test_acc = network_accuracy(net, test);
+ printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
+ }
+ save_network(net, "cfg/nist_cpu.cfg");
+}
+
+void test_correct_alexnet()
+{
+ char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+ list *plist = get_paths("/data/imagenet/cls.train.list");
+ char **paths = (char **)list_to_array(plist);
+ printf("%d\n", plist->size);
+ clock_t time;
+ int count = 0;
+ network net;
+
+ srand(222222);
+ net = parse_network_cfg("cfg/net.cfg");
+ int imgs = net.batch;
+
+ count = 0;
+ while(++count <= 5){
+ time=clock();
+ data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
+ normalize_data_rows(train);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
+ free_data(train);
+ }
+
+ gpu_index = -1;
+ count = 0;
+ srand(222222);
+ net = parse_network_cfg("cfg/net.cfg");
+ printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+ while(++count <= 5){
+ time=clock();
+ data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
+ normalize_data_rows(train);
+ printf("Loaded: %lf seconds\n", sec(clock()-time));
+ time=clock();
+ float loss = train_network(net, train);
+ printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
+ free_data(train);
+ }
+}
+
+/*
+ void run_server()
+ {
+ srand(time(0));
+ network net = parse_network_cfg("cfg/net.cfg");
+ set_batch_network(&net, 1);
+ server_update(net);
+ }
+
+ void test_client()
+ {
+ network net = parse_network_cfg("cfg/alexnet.client");
+ clock_t time=clock();
+ client_update(net, "localhost");
+ printf("1\n");
+ client_update(net, "localhost");
+ printf("2\n");
+ client_update(net, "localhost");
+ printf("3\n");
+ printf("Transfered: %lf seconds\n", sec(clock()-time));
+ }
+ */
diff --git a/src/utils.c b/src/utils.c
index 1db8101..6fb0e43 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -9,6 +9,22 @@
#include "utils.h"
+char *basecfg(char *cfgfile)
+{
+ char *c = cfgfile;
+ char *next;
+ while((next = strchr(c, '/')))
+ {
+ c = next+1;
+ }
+ c = copy_string(c);
+ next = strchr(c, '_');
+ if (next) *next = 0;
+ next = strchr(c, '.');
+ if (next) *next = 0;
+ return c;
+}
+
int alphanum_to_int(char c)
{
return (c < 58) ? c - 48 : c-87;
diff --git a/src/utils.h b/src/utils.h
index 7ae8a8d..4c6b2a9 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -4,6 +4,7 @@
#include <time.h>
#include "list.h"
+char *basecfg(char *cfgfile);
int alphanum_to_int(char c);
char int_to_alphanum(int i);
void read_all(int fd, char *buffer, size_t bytes);
--
Gitblit v1.10.0