From 23955b9fa0a29465ad2a2d13c445b49e6d5adef2 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Mon, 08 Feb 2016 19:50:45 +0000
Subject: [PATCH] binary reading weights
---
src/network.c | 35 ++++++++++++++++++++++++++++++++++-
1 files changed, 34 insertions(+), 1 deletions(-)
diff --git a/src/network.c b/src/network.c
index d9585c4..32c3ba1 100644
--- a/src/network.c
+++ b/src/network.c
@@ -8,8 +8,10 @@
#include "crop_layer.h"
#include "connected_layer.h"
+#include "rnn_layer.h"
#include "local_layer.h"
#include "convolutional_layer.h"
+#include "activation_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
@@ -19,6 +21,7 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
+#include "shortcut_layer.h"
int get_current_batch(network net)
{
@@ -72,12 +75,16 @@
switch(a){
case CONVOLUTIONAL:
return "convolutional";
+ case ACTIVE:
+ return "activation";
case LOCAL:
return "local";
case DECONVOLUTIONAL:
return "deconvolutional";
case CONNECTED:
return "connected";
+ case RNN:
+ return "rnn";
case MAXPOOL:
return "maxpool";
case AVGPOOL:
@@ -94,6 +101,8 @@
return "cost";
case ROUTE:
return "route";
+ case SHORTCUT:
+ return "shortcut";
case NORMALIZATION:
return "normalization";
default:
@@ -119,6 +128,7 @@
{
int i;
for(i = 0; i < net.n; ++i){
+ state.index = i;
layer l = net.layers[i];
if(l.delta){
scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
@@ -127,6 +137,8 @@
forward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
forward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ forward_activation_layer(l, state);
} else if(l.type == LOCAL){
forward_local_layer(l, state);
} else if(l.type == NORMALIZATION){
@@ -135,6 +147,8 @@
forward_detection_layer(l, state);
} else if(l.type == CONNECTED){
forward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ forward_rnn_layer(l, state);
} else if(l.type == CROP){
forward_crop_layer(l, state);
} else if(l.type == COST){
@@ -149,6 +163,8 @@
forward_dropout_layer(l, state);
} else if(l.type == ROUTE){
forward_route_layer(l, net);
+ } else if(l.type == SHORTCUT){
+ forward_shortcut_layer(l, state);
}
state.input = l.output;
}
@@ -167,6 +183,8 @@
update_deconvolutional_layer(l, rate, net.momentum, net.decay);
} else if(l.type == CONNECTED){
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+ } else if(l.type == RNN){
+ update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
} else if(l.type == LOCAL){
update_local_layer(l, update_batch, rate, net.momentum, net.decay);
}
@@ -211,6 +229,7 @@
float *original_input = state.input;
float *original_delta = state.delta;
for(i = net.n-1; i >= 0; --i){
+ state.index = i;
if(i == 0){
state.input = original_input;
state.delta = original_delta;
@@ -224,6 +243,8 @@
backward_convolutional_layer(l, state);
} else if(l.type == DECONVOLUTIONAL){
backward_deconvolutional_layer(l, state);
+ } else if(l.type == ACTIVE){
+ backward_activation_layer(l, state);
} else if(l.type == NORMALIZATION){
backward_normalization_layer(l, state);
} else if(l.type == MAXPOOL){
@@ -238,12 +259,16 @@
if(i != 0) backward_softmax_layer(l, state);
} else if(l.type == CONNECTED){
backward_connected_layer(l, state);
+ } else if(l.type == RNN){
+ backward_rnn_layer(l, state);
} else if(l.type == LOCAL){
backward_local_layer(l, state);
} else if(l.type == COST){
backward_cost_layer(l, state);
} else if(l.type == ROUTE){
backward_route_layer(l, net);
+ } else if(l.type == SHORTCUT){
+ backward_shortcut_layer(l, state);
}
}
}
@@ -255,6 +280,8 @@
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
network_state state;
+ state.index = 0;
+ state.net = net;
state.input = x;
state.delta = 0;
state.truth = y;
@@ -307,6 +334,8 @@
{
int i,j;
network_state state;
+ state.index = 0;
+ state.net = net;
state.train = 1;
state.delta = 0;
float sum = 0;
@@ -347,11 +376,12 @@
layer l = net->layers[i];
if(l.type == CONVOLUTIONAL){
resize_convolutional_layer(&l, w, h);
+ }else if(l.type == CROP){
+ resize_crop_layer(&l, w, h);
}else if(l.type == MAXPOOL){
resize_maxpool_layer(&l, w, h);
}else if(l.type == AVGPOOL){
resize_avgpool_layer(&l, w, h);
- break;
}else if(l.type == NORMALIZATION){
resize_normalization_layer(&l, w, h);
}else if(l.type == COST){
@@ -363,6 +393,7 @@
net->layers[i] = l;
w = l.out_w;
h = l.out_h;
+ if(l.type == AVGPOOL) break;
}
//fprintf(stderr, " Done!\n");
return 0;
@@ -443,6 +474,8 @@
#endif
network_state state;
+ state.net = net;
+ state.index = 0;
state.input = input;
state.truth = 0;
state.train = 0;
--
Gitblit v1.10.0