From 23cb35e6c8eae8b59fab161036ae3f417a55c8db Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 30 Mar 2018 11:46:51 +0000
Subject: [PATCH] Changed small_object

---
 src/blas_kernels.cu |  226 ++++++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 202 insertions(+), 24 deletions(-)

diff --git a/src/blas_kernels.cu b/src/blas_kernels.cu
index ac537d8..1edbbbd 100644
--- a/src/blas_kernels.cu
+++ b/src/blas_kernels.cu
@@ -23,7 +23,7 @@
     dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
     dim3 dimBlock(BLOCK, 1, 1);
 
-    scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    scale_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
     check_error(cudaPeekAtLastError());
 }
 
@@ -67,7 +67,7 @@
     dim3 dimGrid((size-1)/BLOCK + 1, n, batch);
     dim3 dimBlock(BLOCK, 1, 1);
 
-    add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    add_bias_kernel<<<dimGrid, dimBlock, 0, get_cuda_stream()>>>(output, biases, n, size);
     check_error(cudaPeekAtLastError());
 }
 
@@ -140,13 +140,42 @@
 }
 
 
+__global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
+{
+    int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (index >= N) return;
+    
+    x[index] = x[index] - (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
+    //if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
+}
+
+extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
+{
+    adam_kernel<<<cuda_gridsize(n), BLOCK>>>(n, x, m, v, B1, B2, rate, eps, t);
+    check_error(cudaPeekAtLastError());
+}
+
+extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
+{
+	scal_ongpu(n, B1, m, 1);
+	scal_ongpu(n, B2, v, 1);
+	axpy_ongpu(n, -decay*batch, w, 1, d, 1);
+
+	axpy_ongpu(n, (1 - B1), d, 1, m, 1);
+	mul_ongpu(n, d, 1, d, 1);
+	axpy_ongpu(n, (1 - B2), d, 1, v, 1);
+
+	adam_gpu(n, w, m, v, B1, B2, rate, eps, t);
+	fill_ongpu(n, 0, d, 1);
+}
+
 __global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
 {
     int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
+    x[index] = (x[index] - mean[f])/(sqrtf(variance[f]) + .000001f);
 }
 
 __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -155,7 +184,7 @@
     if (index >= N) return;
     int f = (index/spatial)%filters;
     
-    delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
+    delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
 }
 
 extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@@ -177,7 +206,7 @@
             variance_delta[i] += delta[index]*(x[index] - mean[i]);
         }
     }
-    variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
+    variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.));
 }
 
 __global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@@ -208,13 +237,14 @@
             local[id] += (i+id < spatial) ? delta[index] : 0;
         }
     }
+	__syncthreads();
 
     if(id == 0){
         mean_delta[filter] = 0;
         for(i = 0; i < threads; ++i){
             mean_delta[filter] += local[i];
         }
-        mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
+        mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f));
     }
 }
 
@@ -236,13 +266,14 @@
             local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0;
         }
     }
+	__syncthreads();
 
     if(id == 0){
         variance_delta[filter] = 0;
         for(i = 0; i < threads; ++i){
             variance_delta[filter] += local[i];
         }
-        variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
+        variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.));
     }
 }
 
@@ -259,7 +290,7 @@
             mean_delta[i] += delta[index];
         }
     }
-    mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
+    mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f));
 }
 
 extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@@ -282,7 +313,7 @@
 
 __global__ void  mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
 {
-    float scale = 1./(batch * spatial);
+    float scale = 1.F/(batch * spatial);
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
     int j,k;
@@ -298,7 +329,7 @@
 
 __global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
 {
-    float scale = 1./(batch * spatial - 1);
+    float scale = 1.F/(batch * spatial - 1);
     int j,k;
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
     if (i >= filters) return;
@@ -306,12 +337,44 @@
     for(j = 0; j < batch; ++j){
         for(k = 0; k < spatial; ++k){
             int index = j*filters*spatial + i*spatial + k;
-            variance[i] += pow((x[index] - mean[i]), 2);
+            variance[i] += powf((x[index] - mean[i]), 2);
         }
     }
     variance[i] *= scale;
 }
 
+__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i >= N) return;
+    int in_index = i;
+    int in_w = i%w;
+    i = i/w;
+    int in_h = i%h;
+    i = i/h;
+    int in_c = i%c;
+    i = i/c;
+    int b = i%batch;
+
+    int out_c = c/(stride*stride);
+
+    int c2 = in_c % out_c;
+    int offset = in_c / out_c;
+    int w2 = in_w*stride + offset % stride;
+    int h2 = in_h*stride + offset / stride;
+    //printf("%d\n", offset);
+    int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b));
+
+   // printf("%d %d %d\n", w2, h2, c2);
+    //printf("%d %d\n", in_index, out_index);
+    //if(out_index >= N || out_index < 0) printf("bad bad bad \n");
+
+    if(forward) out[out_index] = x[in_index];
+    else out[in_index] = x[out_index];
+    //if(forward) out[1] = x[1];
+    //else out[0] = x[0];
+}
+
 __global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX,  float *Y, int OFFY, int INCY)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -321,7 +384,7 @@
 __global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
+    if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA);
 }
 
 __global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
@@ -333,7 +396,15 @@
 __global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
-    if(i < N) X[i*INCX] = min(ALPHA, max(-ALPHA, X[i*INCX]));
+    if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX]));
+}
+
+__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i < N) {
+        if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0;
+    }
 }
 
 __global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
@@ -370,7 +441,7 @@
 extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
 {
     size_t N = batch*filters*spatial;
-    normalize_kernel<<<cuda_gridsize(N), BLOCK>>>(N, x, mean, variance, batch, filters, spatial);
+    normalize_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, x, mean, variance, batch, filters, spatial);
     check_error(cudaPeekAtLastError());
 }
 
@@ -391,6 +462,7 @@
             local[id] += (i+id < spatial) ? x[index] : 0;
         }
     }
+	__syncthreads();
 
     if(id == 0){
         mean[filter] = 0;
@@ -416,9 +488,10 @@
         for(i = 0; i < spatial; i += threads){
             int index = j*spatial*filters + filter*spatial + i + id;
 
-            local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
+            local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0;
         }
     }
+	__syncthreads();
 
     if(id == 0){
         variance[filter] = 0;
@@ -431,13 +504,13 @@
 
 extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean)
 {
-    fast_mean_kernel<<<filters, BLOCK>>>(x, batch, filters, spatial, mean);
+    fast_mean_kernel<<<filters, BLOCK, 0, get_cuda_stream()>>>(x, batch, filters, spatial, mean);
     check_error(cudaPeekAtLastError());
 }
 
 extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
 {
-    fast_variance_kernel<<<filters, BLOCK>>>(x, mean, batch, filters, spatial, variance);
+    fast_variance_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance);
     check_error(cudaPeekAtLastError());
 }
 
@@ -461,13 +534,13 @@
 
 extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
 {
-    pow_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX, Y, INCY);
+    pow_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX, Y, INCY);
     check_error(cudaPeekAtLastError());
 }
 
 extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
 {
-    axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
+    axpy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
     check_error(cudaPeekAtLastError());
 }
 
@@ -484,13 +557,44 @@
 
 extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
 {
-    copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
+    copy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void flatten_kernel(int N, float *x, int spatial, int layers, int batch, int forward, float *out)
+{
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(i >= N) return;
+    int in_s = i%spatial;
+    i = i/spatial;
+    int in_c = i%layers;
+    i = i/layers;
+    int b = i;
+
+    int i1 = b*layers*spatial + in_c*spatial + in_s;
+    int i2 = b*layers*spatial + in_s*layers +  in_c;
+
+    if (forward) out[i2] = x[i1];
+    else out[i1] = x[i2];
+}
+
+extern "C" void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out)
+{
+    int size = spatial*batch*layers;
+    flatten_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, spatial, layers, batch, forward, out);
+    check_error(cudaPeekAtLastError());
+}
+
+extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out)
+{
+    int size = w*h*c*batch;
+    reorg_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, w, h, c, batch, stride, forward, out);
     check_error(cudaPeekAtLastError());
 }
 
 extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask)
 {
-    mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask_num, mask);
+    mask_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask);
     check_error(cudaPeekAtLastError());
 }
 
@@ -509,13 +613,19 @@
 
 extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
 {
-    scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+    scal_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
+    check_error(cudaPeekAtLastError());
+}
+
+extern "C" void supp_ongpu(int N, float ALPHA, float * X, int INCX)
+{
+    supp_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
     check_error(cudaPeekAtLastError());
 }
 
 extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX)
 {
-    fill_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
+    fill_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX);
     check_error(cudaPeekAtLastError());
 }
 
@@ -550,7 +660,7 @@
     if(sample < 1) sample = 1;
 
     int size = batch * minw * minh * minc;
-    shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
+    shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
     check_error(cudaPeekAtLastError());
 }
 
@@ -594,6 +704,7 @@
 }
 
 
+
 __global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c)
 {
     int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
@@ -637,3 +748,70 @@
     mult_add_into_kernel<<<cuda_gridsize(num), BLOCK>>>(num, a, b, c);
     check_error(cudaPeekAtLastError());
 }
+
+
+__device__ void softmax_device(int n, float *input, float temp, float *output)
+{
+    int i;
+    float sum = 0;
+    float largest = -INFINITY;
+    for(i = 0; i < n; ++i){
+        int val = input[i];
+        largest = (val>largest) ? val : largest;
+    }
+    for(i = 0; i < n; ++i){
+        float e = exp(input[i]/temp - largest/temp);
+        sum += e;
+        output[i] = e;
+    }
+    for(i = 0; i < n; ++i){
+        output[i] /= sum;
+    }
+}
+
+__global__ void softmax_kernel(int n, int offset, int batch, float *input, float temp, float *output)
+{
+    int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if(b >= batch) return;
+    softmax_device(n, input + b*offset, temp, output + b*offset);
+}
+
+extern "C" void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output)
+{
+    int inputs = n;
+    int batch = groups;
+    softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
+    check_error(cudaPeekAtLastError());
+}
+
+
+__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+	size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+	if (i >= N) return;
+	int out_index = i;
+	int out_w = i % (w*stride);
+	i = i / (w*stride);
+	int out_h = i % (h*stride);
+	i = i / (h*stride);
+	int out_c = i%c;
+	i = i / c;
+	int b = i%batch;
+
+	int in_w = out_w / stride;
+	int in_h = out_h / stride;
+	int in_c = out_c;
+
+	int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w;
+
+
+	if (forward) out[out_index] += scale * x[in_index];
+	else atomicAdd(x + in_index, scale * out[out_index]);
+}
+
+extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
+{
+	size_t size = w*h*c*batch*stride*stride;
+	upsample_kernel << <cuda_gridsize(size), BLOCK >> >(size, in, w, h, c, batch, stride, forward, scale, out);
+	check_error(cudaPeekAtLastError());
+}
\ No newline at end of file

--
Gitblit v1.10.0