From 23cb35e6c8eae8b59fab161036ae3f417a55c8db Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 30 Mar 2018 11:46:51 +0000
Subject: [PATCH] Changed small_object

---
 src/coco.c |  117 +++++++++++++++++++++-------------------------------------
 1 files changed, 43 insertions(+), 74 deletions(-)

diff --git a/src/coco.c b/src/coco.c
index aadf09d..814b34c 100644
--- a/src/coco.c
+++ b/src/coco.c
@@ -6,6 +6,7 @@
 #include "utils.h"
 #include "parser.h"
 #include "box.h"
+#include "demo.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
@@ -15,39 +16,14 @@
 
 int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
-{
-    int classes = 80;
-    int i;
-
-    for(i = 0; i < num; ++i){
-        int class = max_index(probs[i], classes);
-        float prob = probs[i][class];
-        if(prob > thresh){
-            int width = sqrt(prob)*5 + 1;
-            printf("%f %s\n", prob, coco_classes[class]);
-            float red = get_color(0,class,classes);
-            float green = get_color(1,class,classes);
-            float blue = get_color(2,class,classes);
-            box b = boxes[i];
-
-            int left  = (b.x-b.w/2.)*im.w;
-            int right = (b.x+b.w/2.)*im.w;
-            int top   = (b.y-b.h/2.)*im.h;
-            int bot   = (b.y+b.h/2.)*im.h;
-            draw_box_width(im, left, top, right, bot, width, red, green, blue);
-        }
-    }
-    show_image(im, label);
-}
-
 void train_coco(char *cfgfile, char *weightfile)
 {
     //char *train_images = "/home/pjreddie/data/voc/test/train.txt";
-    char *train_images = "/home/pjreddie/data/coco/train.txt";
+    //char *train_images = "/home/pjreddie/data/coco/train.txt";
+    char *train_images = "data/coco.trainval.txt";
+    //char *train_images = "data/bags.train.list";
     char *backup_directory = "/home/pjreddie/backup/";
     srand(time(0));
-    data_seed = time(0);
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
     float avg_loss = -1;
@@ -83,6 +59,11 @@
     args.d = &buffer;
     args.type = REGION_DATA;
 
+    args.angle = net.angle;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
+    args.hue = net.hue;
+
     pthread_t load_thread = load_data_in_thread(args);
     clock_t time;
     //while(i*imgs < N*120){
@@ -109,11 +90,16 @@
         avg_loss = avg_loss*.9 + loss*.1;
 
         printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
-        if(i%1000==0){
+        if(i%1000==0 || (i < 1000 && i%100 == 0)){
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
         }
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
         free_data(train);
     }
     char buff[256];
@@ -121,34 +107,6 @@
     save_weights(net, buff);
 }
 
-void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
-{
-    int i,j,n;
-    //int per_cell = 5*num+classes;
-    for (i = 0; i < side*side; ++i){
-        int row = i / side;
-        int col = i % side;
-        for(n = 0; n < num; ++n){
-            int index = i*num + n;
-            int p_index = side*side*classes + i*num + n;
-            float scale = predictions[p_index];
-            int box_index = side*side*(classes + num) + (i*num + n)*4;
-            boxes[index].x = (predictions[box_index + 0] + col) / side * w;
-            boxes[index].y = (predictions[box_index + 1] + row) / side * h;
-            boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
-            boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
-            for(j = 0; j < classes; ++j){
-                int class_index = i*classes;
-                float prob = scale*predictions[class_index+j];
-                probs[index][j] = (prob > thresh) ? prob : 0;
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
-        }
-    }
-}
-
 void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
 {
     int i, j;
@@ -198,7 +156,6 @@
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int square = l.sqrt;
     int side = l.side;
 
     int j;
@@ -215,7 +172,7 @@
     int i=0;
     int t;
 
-    float thresh = .001;
+    float thresh = .01;
     int nms = 1;
     float iou_thresh = .5;
 
@@ -255,10 +212,10 @@
             char *path = paths[i+t-nthreads];
             int image_id = get_coco_image_id(path);
             float *X = val_resized[t].data;
-            float *predictions = network_predict(net, X);
+            network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
+            get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
             if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
             print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
             free_image(val[t]);
@@ -288,7 +245,6 @@
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int square = l.sqrt;
     int side = l.side;
 
     int j, k;
@@ -320,14 +276,15 @@
         image orig = load_image_color(path, 0, 0);
         image sized = resize_image(orig, net.w, net.h);
         char *id = basecfg(path);
-        float *predictions = network_predict(net, sized.data);
-        convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
+        network_predict(net, sized.data);
+        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1);
         if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
 
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+        char labelpath[4096];
+        find_replace(path, "images", "labels", labelpath);
+        find_replace(labelpath, "JPEGImages", "labels", labelpath);
+        find_replace(labelpath, ".jpg", ".txt", labelpath);
+        find_replace(labelpath, ".JPEG", ".txt", labelpath);
 
         int num_labels = 0;
         box_label *truth = read_boxes(labelpath, &num_labels);
@@ -361,7 +318,7 @@
 
 void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
 {
-
+    image **alphabet = load_alphabet();
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -369,6 +326,7 @@
     detection_layer l = net.layers[net.n-1];
     set_batch_network(&net, 1);
     srand(2222222);
+    float nms = .4;
     clock_t time;
     char buff[256];
     char *input = buff;
@@ -390,12 +348,13 @@
         image sized = resize_image(im, net.w, net.h);
         float *X = sized.data;
         time=clock();
-        float *predictions = network_predict(net, X);
+        network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
-        draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
-
-        show_image(sized, "resized");
+        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80);
+        save_image(im, "prediction");
+        show_image(im, "predictions");
         free_image(im);
         free_image(sized);
 #ifdef OPENCV
@@ -408,7 +367,15 @@
 
 void run_coco(int argc, char **argv)
 {
+	int dont_show = find_arg(argc, argv, "-dont_show");
+	int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
+	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
     float thresh = find_float_arg(argc, argv, "-thresh", .2);
+	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
+
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
@@ -421,4 +388,6 @@
     else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, coco_classes, 80, frame_skip,
+		prefix, out_filename, http_stream_port, dont_show);
 }

--
Gitblit v1.10.0