From 23cb35e6c8eae8b59fab161036ae3f417a55c8db Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 30 Mar 2018 11:46:51 +0000
Subject: [PATCH] Changed small_object

---
 src/convolutional_kernels.cu |  463 +++++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 393 insertions(+), 70 deletions(-)

diff --git a/src/convolutional_kernels.cu b/src/convolutional_kernels.cu
index 5b49091..603d531 100644
--- a/src/convolutional_kernels.cu
+++ b/src/convolutional_kernels.cu
@@ -1,5 +1,14 @@
+#include "cuda_runtime.h"
+#include "curand.h"
+#include "cublas_v2.h"
+
+#ifdef CUDNN
+#pragma comment(lib, "cudnn.lib")  
+#endif
+
 extern "C" {
 #include "convolutional_layer.h"
+#include "batchnorm_layer.h"
 #include "gemm.h"
 #include "blas.h"
 #include "im2col.h"
@@ -8,128 +17,442 @@
 #include "cuda.h"
 }
 
-__global__ void bias_output_kernel(float *output, float *biases, int n, int size)
+__global__ void binarize_kernel(float *x, int n, float *binary)
 {
-    int offset = blockIdx.x * blockDim.x + threadIdx.x;
-    int filter = blockIdx.y % n;
-    int batch = blockIdx.y / n;
-
-    if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
+    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (i >= n) return;
+    binary[i] = (x[i] >= 0) ? 1 : -1;
 }
 
-void bias_output_gpu(float *output, float *biases, int batch, int n, int size)
+void binarize_gpu(float *x, int n, float *binary)
 {
-    dim3 dimGrid((size-1)/BLOCK + 1, n*batch, 1);
-    dim3 dimBlock(BLOCK, 1, 1);
-
-    bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size);
+    binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary);
     check_error(cudaPeekAtLastError());
 }
 
-__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale)
+__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
 {
-    __shared__ float part[BLOCK];
-    int i,b;
-    int filter = blockIdx.x;
-    int p = threadIdx.x;
-    float sum = 0;
-    for(b = 0; b < batch; ++b){
-        for(i = 0; i < size; i += BLOCK){
-            int index = p + i + size*(filter + n*b);
-            sum += (p+i < size) ? delta[index] : 0;
-        }
+    int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (s >= size) return;
+    int i = 0;
+    float mean = 0;
+    for(i = 0; i < n; ++i){
+        mean += fabs(input[i*size + s]);
     }
-    part[p] = sum;
-    __syncthreads();
-    if(p == 0){
-        for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i];
+    mean = mean / n;
+    for(i = 0; i < n; ++i){
+        binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
     }
 }
 
-void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
+void binarize_input_gpu(float *input, int n, int size, float *binary)
 {
-    backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1);
+    binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary);
     check_error(cudaPeekAtLastError());
 }
 
-void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+
+__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
 {
+    int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
+    if (f >= n) return;
+    int i = 0;
+    float mean = 0;
+    for(i = 0; i < size; ++i){
+        mean += fabs(weights[f*size + i]);
+    }
+    mean = mean / size;
+    for(i = 0; i < size; ++i){
+        binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
+        //binary[f*size + i] = weights[f*size + i];
+    }
+}
+
+void binarize_weights_gpu(float *weights, int n, int size, float *binary)
+{
+    binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary);
+    check_error(cudaPeekAtLastError());
+}
+
+__global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
+{
+	int idx = blockIdx.x * blockDim.x + threadIdx.x;
+	if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
+	//if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
+}
+
+void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
+	cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
+}
+
+__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
+{
+	int idx = blockIdx.x * blockDim.x + threadIdx.x;
+	if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
+	//if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
+}
+
+void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
+	cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
+}
+
+half *cuda_make_f16_from_f32_array(float *src, size_t n)
+{
+	half *dst16;
+	size_t size = sizeof(half)*n;
+	check_error(cudaMalloc((void **)&dst16, size));
+	if (src) {
+		cuda_convert_f32_to_f16(src, n, (float *)dst16);
+	}
+	if (!dst16) error("Cuda malloc failed\n");
+	return dst16;
+}
+
+void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
+{
+    fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
+    if(l.binary){
+        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
+        swap_binary(&l);
+    }
+
+    if(l.xnor){
+        binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
+        swap_binary(&l);
+        binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
+        state.input = l.binary_input_gpu;
+    }
+
+#ifdef CUDNN
+	float one = 1;	// alpha[0], beta[0] is float for HALF and FLOAT
+	float alpha = 1, beta = 0; 
+
+#ifdef CUDNN_HALF
+	// Note: For improved performance it is advised to use beta[0] = 0.0. 
+	// For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH;
+	// 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF
+	// 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
+	// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
+
+	const size_t input16_size = l.batch*l.c*l.w*l.h;
+	const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w;
+
+	if (*state.net.max_input16_size < input16_size) {
+		//printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size);
+		*state.net.max_input16_size = input16_size;
+		if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
+		*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
+	}
+	float *input16 = *state.net.input16_gpu;
+
+	if (*state.net.max_output16_size < output16_size) {
+		*state.net.max_output16_size = output16_size;
+		if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
+		*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
+	}
+	float *output16 = *state.net.output16_gpu;
+
+	cuda_convert_f32_to_f16(state.input, input16_size, input16);
+
+	//fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
+	cudnnConvolutionForward(cudnn_handle(),
+		&alpha,
+		l.srcTensorDesc,
+		input16,
+		l.weightDesc,
+		l.weights_gpu16,
+		l.convDesc,
+		l.fw_algo,
+		state.workspace,
+		l.workspace_size,
+		&beta,
+		l.dstTensorDesc,
+		output16);
+	
+	cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
+
+#else
+
+    cudnnConvolutionForward(cudnn_handle(),
+                &one,
+                l.srcTensorDesc,
+                state.input,
+                l.weightDesc,
+                l.weights_gpu,
+                l.convDesc,
+                l.fw_algo,
+                state.workspace,
+                l.workspace_size,
+                &one,
+                l.dstTensorDesc,
+                l.output_gpu);
+#endif
+
+
+#else
     int i;
-    int m = layer.n;
-    int k = layer.size*layer.size*layer.c;
-    int n = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
-
-    bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n);
-    for(i = 0; i < layer.batch; ++i){
-        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
-        float * a = layer.filters_gpu;
-        float * b = layer.col_image_gpu;
-        float * c = layer.output_gpu;
+    int m = l.n;
+    int k = l.size*l.size*l.c;
+    int n = l.out_w*l.out_h;
+    for(i = 0; i < l.batch; ++i){
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
+        float * a = l.weights_gpu;
+        float * b = state.workspace;
+        float * c = l.output_gpu;
         gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
     }
-    activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
+#endif
+
+    if (l.batch_normalize) {
+        forward_batchnorm_layer_gpu(l, state);
+	}
+	else {
+		add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
+	}
+
+    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+    //if(l.dot > 0) dot_error_gpu(l);
+    if(l.binary || l.xnor) swap_binary(&l);
+	//cudaDeviceSynchronize();	// for correct profiling of performance
 }
 
-void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state)
+void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
 {
+    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
+
+    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
+
+    if(l.batch_normalize){
+        backward_batchnorm_layer_gpu(l, state);
+        //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.x_gpu, 1, l.delta_gpu, 1);
+    } else {
+        //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.output_gpu, 1, l.delta_gpu, 1);
+    }
+    float *original_input = state.input;
+
+    if(l.xnor) state.input = l.binary_input_gpu;
+#ifdef CUDNN
+	float one = 1;
+	float alpha = 1, beta = 0;
+
+#ifdef CUDNN_HALF
+		
+	const size_t input16_size = l.batch*l.c*l.w*l.h;
+	const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h;
+	
+	if (*state.net.max_input16_size < input16_size) {		
+		*state.net.max_input16_size = input16_size;
+		if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
+		*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
+	}
+	float *input16 = *state.net.input16_gpu;
+
+	if (*state.net.max_output16_size < delta16_size) {
+		*state.net.max_output16_size = delta16_size;
+		if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
+		*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
+	}
+	float *delta16 = *state.net.output16_gpu;
+
+	cuda_convert_f32_to_f16(state.input, input16_size, input16);
+	cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
+	
+	// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
+	// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
+
+	// calculate conv weight updates
+	// Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum
+	//   so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
+	cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16);
+
+	cudnnConvolutionBackwardFilter(cudnn_handle(),
+		&one,
+		l.srcTensorDesc,
+		input16, //state.input,
+		l.ddstTensorDesc,
+		delta16, //l.delta_gpu,
+		l.convDesc,
+		l.bf_algo,
+		state.workspace,
+		l.workspace_size,
+		&one,
+		l.dweightDesc,
+		l.weight_updates_gpu16);	// l.weight_updates_gpu);
+
+	cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu);
+
+	if (state.delta) {
+		if (l.binary || l.xnor) swap_binary(&l);
+
+		// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
+		// calculate delta for the next layer
+		// convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
+		// get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)	
+		cudnnConvolutionBackwardData(cudnn_handle(),
+			&alpha,
+			l.weightDesc,
+			l.weights_gpu16, //l.weights_gpu,
+			l.ddstTensorDesc,
+			delta16, //l.delta_gpu,
+			l.convDesc,
+			l.bd_algo,
+			state.workspace,
+			l.workspace_size,
+			&beta,
+			l.dsrcTensorDesc,
+			input16);	// state.delta);
+
+		cuda_convert_f16_to_f32(input16, input16_size, state.delta);
+
+		if (l.binary || l.xnor) swap_binary(&l);
+		if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
+	}
+#else	// CUDNN_HALF
+
+	// calculate conv weight updates
+	// if used: beta=1 then loss decreases faster
+    cudnnConvolutionBackwardFilter(cudnn_handle(),
+            &one,
+            l.srcTensorDesc,
+            state.input,
+            l.ddstTensorDesc,
+            l.delta_gpu,
+            l.convDesc,
+            l.bf_algo,
+            state.workspace,
+            l.workspace_size,
+            &one,
+            l.dweightDesc,
+            l.weight_updates_gpu);
+
+    if(state.delta){
+        if(l.binary || l.xnor) swap_binary(&l);
+		// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
+		// calculate delta for the next layer
+        cudnnConvolutionBackwardData(cudnn_handle(),
+                &one,
+                l.weightDesc,
+                l.weights_gpu,
+                l.ddstTensorDesc,
+                l.delta_gpu,
+                l.convDesc,
+                l.bd_algo,
+                state.workspace,
+                l.workspace_size,
+                &one,
+                l.dsrcTensorDesc,
+                state.delta);
+        if(l.binary || l.xnor) swap_binary(&l);
+        if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
+    }
+
+#endif	// CUDNN_HALF
+
+#else	// CUDNN
+    int m = l.n;
+    int n = l.size*l.size*l.c;
+    int k = l.out_w*l.out_h;
+
     int i;
-    int m = layer.n;
-    int n = layer.size*layer.size*layer.c;
-    int k = convolutional_out_height(layer)*
-        convolutional_out_width(layer);
+    for(i = 0; i < l.batch; ++i){
+        float * a = l.delta_gpu;
+        float * b = state.workspace;
+        float * c = l.weight_updates_gpu;
 
-    gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
-    backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k);
-
-    if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1);
-
-    for(i = 0; i < layer.batch; ++i){
-        float * a = layer.delta_gpu;
-        float * b = layer.col_image_gpu;
-        float * c = layer.filter_updates_gpu;
-
-        im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_gpu);
+        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
         gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
 
         if(state.delta){
-
-            float * a = layer.filters_gpu;
-            float * b = layer.delta_gpu;
-            float * c = layer.col_image_gpu;
+            if(l.binary || l.xnor) swap_binary(&l);
+            float * a = l.weights_gpu;
+            float * b = l.delta_gpu;
+            float * c = state.workspace;
 
             gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
 
-            col2im_ongpu(layer.col_image_gpu, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w);
+            col2im_ongpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
+            if(l.binary || l.xnor) {
+                swap_binary(&l);
+            }
+            if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
         }
     }
+#endif
 }
 
 void pull_convolutional_layer(convolutional_layer layer)
 {
-    cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+    if (layer.batch_normalize){
+        cuda_pull_array(layer.scales_gpu, layer.scales, layer.n);
+        cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+        cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+    }
+    if (layer.adam){
+        cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
+        cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
+    }
 }
 
 void push_convolutional_layer(convolutional_layer layer)
 {
-    cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size);
+#ifdef CUDNN_HALF
+	cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16);
+#endif
     cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
-    cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size);
     cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
+    if (layer.batch_normalize){
+        cuda_push_array(layer.scales_gpu, layer.scales, layer.n);
+        cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
+        cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
+    }
+    if (layer.adam){
+        cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
+        cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
+    }
 }
 
 void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
 {
     int size = layer.size*layer.size*layer.c*layer.n;
-
     axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
     scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
 
-    axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
-    axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
-    scal_ongpu(size, momentum, layer.filter_updates_gpu, 1);
+    if(layer.scales_gpu){
+        axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
+        scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
+    }
+
+    if(layer.adam){
+        scal_ongpu(size, layer.B1, layer.m_gpu, 1);
+        scal_ongpu(size, layer.B2, layer.v_gpu, 1);
+
+        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+
+        axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
+        mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
+        axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);
+
+        adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1);
+        fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
+    }else{
+		// update weights:
+		// weights_gpu = weights_gpu*(1 - decay*lr) + weight_updates_gpu*lr / (batch*subdivision) =
+		//  weights_gpu*(1 - 0.0005*0.001) + weight_updates_gpu*0.001/(64*8) = 
+		//  weights_gpu * 0.999 999 5 + weight_updates_gpu * 0.000 001 953125
+		// 
+		// weight_updates_gpu = (weight_updates_gpu - weights_gpu*decay*batch*subdivision)*momentum = 
+		//  (weight_updates_gpu - weights_gpu * 0.0005 * 64 * 8) * 0.9 = 
+		//  weight_updates_gpu*0.9 - weights_gpu*0.2304
+        axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
+        axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
+        scal_ongpu(size, momentum, layer.weight_updates_gpu, 1);
+    }
 }
 
+

--
Gitblit v1.10.0