From 23cb35e6c8eae8b59fab161036ae3f417a55c8db Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 30 Mar 2018 11:46:51 +0000
Subject: [PATCH] Changed small_object

---
 src/darknet.c |  122 ++++++++++++++++++++++++++++------------
 1 files changed, 86 insertions(+), 36 deletions(-)

diff --git a/src/darknet.c b/src/darknet.c
index 263349e..627b6db 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -12,6 +12,8 @@
 #include "opencv2/highgui/highgui_c.h"
 #endif
 
+extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
+extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh);
 extern void run_voxel(int argc, char **argv);
 extern void run_yolo(int argc, char **argv);
 extern void run_detector(int argc, char **argv);
@@ -30,20 +32,6 @@
 extern void run_art(int argc, char **argv);
 extern void run_super(int argc, char **argv);
 
-void change_rate(char *filename, float scale, float add)
-{
-    // Ready for some weird shit??
-    FILE *fp = fopen(filename, "r+b");
-    if(!fp) file_error(filename);
-    float rate = 0;
-    fread(&rate, sizeof(float), 1, fp);
-    printf("Scaling learning rate from %f to %f\n", rate, rate*scale+add);
-    rate = rate*scale + add;
-    fseek(fp, 0, SEEK_SET);
-    fwrite(&rate, sizeof(float), 1, fp);
-    fclose(fp);
-}
-
 void average(int argc, char *argv[])
 {
     char *cfgfile = argv[2];
@@ -66,7 +54,12 @@
             if(l.type == CONVOLUTIONAL){
                 int num = l.n*l.c*l.size*l.size;
                 axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
-                axpy_cpu(num, 1, l.filters, 1, out.filters, 1);
+                axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
+                if(l.batch_normalize){
+                    axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
+                    axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
+                    axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
+                }
             }
             if(l.type == CONNECTED){
                 axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
@@ -80,7 +73,12 @@
         if(l.type == CONVOLUTIONAL){
             int num = l.n*l.c*l.size*l.size;
             scal_cpu(l.n, 1./n, l.biases, 1);
-            scal_cpu(num, 1./n, l.filters, 1);
+            scal_cpu(num, 1./n, l.weights, 1);
+                if(l.batch_normalize){
+                    scal_cpu(l.n, 1./n, l.scales, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_mean, 1);
+                    scal_cpu(l.n, 1./n, l.rolling_variance, 1);
+                }
         }
         if(l.type == CONNECTED){
             scal_cpu(l.outputs, 1./n, l.biases, 1);
@@ -125,6 +123,31 @@
     printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
 }
 
+void oneoff(char *cfgfile, char *weightfile, char *outfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    int oldn = net.layers[net.n - 2].n;
+    int c = net.layers[net.n - 2].c;
+    net.layers[net.n - 2].n = 9372;
+    net.layers[net.n - 2].biases += 5;
+    net.layers[net.n - 2].weights += 5*c;
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    net.layers[net.n - 2].biases -= 5;
+    net.layers[net.n - 2].weights -= 5*c;
+    net.layers[net.n - 2].n = oldn;
+    printf("%d\n", oldn);
+    layer l = net.layers[net.n - 2];
+    copy_cpu(l.n/3, l.biases, 1, l.biases +   l.n/3, 1);
+    copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights +   l.n/3*l.c, 1);
+    copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
+    *net.seen = 0;
+    save_weights(net, outfile);
+}
+
 void partial(char *cfgfile, char *weightfile, char *outfile, int max)
 {
     gpu_index = -1;
@@ -136,17 +159,6 @@
     save_weights_upto(net, outfile, max);
 }
 
-void stacked(char *cfgfile, char *weightfile, char *outfile)
-{
-    gpu_index = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    net.seen = 0;
-    save_weights_double(net, outfile);
-}
-
 #include "convolutional_layer.h"
 void rescale_net(char *cfgfile, char *weightfile, char *outfile)
 {
@@ -159,7 +171,7 @@
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            rescale_filters(l, 2, -.5);
+            rescale_weights(l, 2, -.5);
             break;
         }
     }
@@ -177,7 +189,7 @@
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
         if(l.type == CONVOLUTIONAL){
-            rgbgr_filters(l);
+            rgbgr_weights(l);
             break;
         }
     }
@@ -254,6 +266,39 @@
     save_weights(net, outfile);
 }
 
+void statistics_net(char *cfgfile, char *weightfile)
+{
+    gpu_index = -1;
+    network net = parse_network_cfg(cfgfile);
+    if (weightfile) {
+        load_weights(&net, weightfile);
+    }
+    int i;
+    for (i = 0; i < net.n; ++i) {
+        layer l = net.layers[i];
+        if (l.type == CONNECTED && l.batch_normalize) {
+            printf("Connected Layer %d\n", i);
+            statistics_connected_layer(l);
+        }
+        if (l.type == GRU && l.batch_normalize) {
+            printf("GRU Layer %d\n", i);
+            printf("Input Z\n");
+            statistics_connected_layer(*l.input_z_layer);
+            printf("Input R\n");
+            statistics_connected_layer(*l.input_r_layer);
+            printf("Input H\n");
+            statistics_connected_layer(*l.input_h_layer);
+            printf("State Z\n");
+            statistics_connected_layer(*l.state_z_layer);
+            printf("State R\n");
+            statistics_connected_layer(*l.state_r_layer);
+            printf("State H\n");
+            statistics_connected_layer(*l.state_h_layer);
+        }
+        printf("\n");
+    }
+}
+
 void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
 {
     gpu_index = -1;
@@ -321,8 +366,7 @@
     gpu_index = -1;
 #else
     if(gpu_index >= 0){
-        cudaError_t status = cudaSetDevice(gpu_index);
-        check_error(status);
+        cuda_set_device(gpu_index);
     }
 #endif
 
@@ -336,6 +380,10 @@
         run_super(argc, argv);
     } else if (0 == strcmp(argv[1], "detector")){
         run_detector(argc, argv);
+    } else if (0 == strcmp(argv[1], "detect")){
+        float thresh = find_float_arg(argc, argv, "-thresh", .24);
+        char *filename = (argc > 4) ? argv[4]: 0;
+        test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh);
     } else if (0 == strcmp(argv[1], "cifar")){
         run_cifar(argc, argv);
     } else if (0 == strcmp(argv[1], "go")){
@@ -346,6 +394,8 @@
         run_vid_rnn(argc, argv);
     } else if (0 == strcmp(argv[1], "coco")){
         run_coco(argc, argv);
+    } else if (0 == strcmp(argv[1], "classify")){
+        predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
     } else if (0 == strcmp(argv[1], "classifier")){
         run_classifier(argc, argv);
     } else if (0 == strcmp(argv[1], "art")){
@@ -366,14 +416,14 @@
         run_captcha(argc, argv);
     } else if (0 == strcmp(argv[1], "nightmare")){
         run_nightmare(argc, argv);
-    } else if (0 == strcmp(argv[1], "change")){
-        change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
     } else if (0 == strcmp(argv[1], "rgbgr")){
         rgbgr_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "reset")){
         reset_normalize_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "denormalize")){
         denormalize_net(argv[2], argv[3], argv[4]);
+    } else if (0 == strcmp(argv[1], "statistics")){
+        statistics_net(argv[2], argv[3]);
     } else if (0 == strcmp(argv[1], "normalize")){
         normalize_net(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "rescale")){
@@ -381,13 +431,13 @@
     } else if (0 == strcmp(argv[1], "ops")){
         operations(argv[2]);
     } else if (0 == strcmp(argv[1], "speed")){
-        speed(argv[2], (argc > 3) ? atoi(argv[3]) : 0);
+        speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
+    } else if (0 == strcmp(argv[1], "oneoff")){
+        oneoff(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "partial")){
         partial(argv[2], argv[3], argv[4], atoi(argv[5]));
     } else if (0 == strcmp(argv[1], "average")){
         average(argc, argv);
-    } else if (0 == strcmp(argv[1], "stacked")){
-        stacked(argv[2], argv[3], argv[4]);
     } else if (0 == strcmp(argv[1], "visualize")){
         visualize(argv[2], (argc > 3) ? argv[3] : 0);
     } else if (0 == strcmp(argv[1], "imtest")){

--
Gitblit v1.10.0