From 23cb35e6c8eae8b59fab161036ae3f417a55c8db Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Fri, 30 Mar 2018 11:46:51 +0000
Subject: [PATCH] Changed small_object

---
 src/network.c |  366 +++++++++++++++++++++++++++++++++++++++------------
 1 files changed, 278 insertions(+), 88 deletions(-)

diff --git a/src/network.c b/src/network.c
index d823c15..175c102 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,5 +1,6 @@
 #include <stdio.h>
 #include <time.h>
+#include <assert.h>
 #include "network.h"
 #include "image.h"
 #include "data.h"
@@ -8,17 +9,25 @@
 
 #include "crop_layer.h"
 #include "connected_layer.h"
+#include "gru_layer.h"
+#include "rnn_layer.h"
+#include "crnn_layer.h"
+#include "local_layer.h"
 #include "convolutional_layer.h"
-#include "deconvolutional_layer.h"
+#include "activation_layer.h"
 #include "detection_layer.h"
 #include "region_layer.h"
 #include "normalization_layer.h"
+#include "batchnorm_layer.h"
 #include "maxpool_layer.h"
+#include "reorg_layer.h"
 #include "avgpool_layer.h"
 #include "cost_layer.h"
 #include "softmax_layer.h"
 #include "dropout_layer.h"
 #include "route_layer.h"
+#include "shortcut_layer.h"
+#include "yolo_layer.h"
 
 int get_current_batch(network net)
 {
@@ -26,18 +35,46 @@
     return batch_num;
 }
 
+void reset_momentum(network net)
+{
+    if (net.momentum == 0) return;
+    net.learning_rate = 0;
+    net.momentum = 0;
+    net.decay = 0;
+    #ifdef GPU
+        //if(net.gpu_index >= 0) update_network_gpu(net);
+    #endif
+}
+
 float get_current_rate(network net)
 {
     int batch_num = get_current_batch(net);
+    int i;
+    float rate;
+	if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
     switch (net.policy) {
         case CONSTANT:
             return net.learning_rate;
         case STEP:
-            return net.learning_rate * pow(net.gamma, batch_num/net.step);
+            return net.learning_rate * pow(net.scale, batch_num/net.step);
+        case STEPS:
+            rate = net.learning_rate;
+            for(i = 0; i < net.num_steps; ++i){
+                if(net.steps[i] > batch_num) return rate;
+                rate *= net.scales[i];
+                //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
+            }
+            return rate;
         case EXP:
             return net.learning_rate * pow(net.gamma, batch_num);
         case POLY:
-            return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+			return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+            //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
+            //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
+        case RANDOM:
+            return net.learning_rate * pow(rand_uniform(0,1), net.power);
+        case SIG:
+            return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
         default:
             fprintf(stderr, "Policy is weird!\n");
             return net.learning_rate;
@@ -49,12 +86,24 @@
     switch(a){
         case CONVOLUTIONAL:
             return "convolutional";
+        case ACTIVE:
+            return "activation";
+        case LOCAL:
+            return "local";
         case DECONVOLUTIONAL:
             return "deconvolutional";
         case CONNECTED:
             return "connected";
+        case RNN:
+            return "rnn";
+        case GRU:
+            return "gru";
+        case CRNN:
+            return "crnn";
         case MAXPOOL:
             return "maxpool";
+        case REORG:
+            return "reorg";
         case AVGPOOL:
             return "avgpool";
         case SOFTMAX:
@@ -71,8 +120,12 @@
             return "cost";
         case ROUTE:
             return "route";
+        case SHORTCUT:
+            return "shortcut";
         case NORMALIZATION:
             return "normalization";
+        case BATCHNORM:
+            return "batchnorm";
         default:
             break;
     }
@@ -88,45 +141,26 @@
     #ifdef GPU
     net.input_gpu = calloc(1, sizeof(float *));
     net.truth_gpu = calloc(1, sizeof(float *));
+
+	net.input16_gpu = calloc(1, sizeof(float *));
+	net.output16_gpu = calloc(1, sizeof(float *));
+	net.max_input16_size = calloc(1, sizeof(size_t));
+	net.max_output16_size = calloc(1, sizeof(size_t));
     #endif
     return net;
 }
 
 void forward_network(network net, network_state state)
 {
+    state.workspace = net.workspace;
     int i;
     for(i = 0; i < net.n; ++i){
+        state.index = i;
         layer l = net.layers[i];
         if(l.delta){
             scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
         }
-        if(l.type == CONVOLUTIONAL){
-            forward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            forward_deconvolutional_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            forward_normalization_layer(l, state);
-        } else if(l.type == DETECTION){
-            forward_detection_layer(l, state);
-        } else if(l.type == REGION){
-            forward_region_layer(l, state);
-        } else if(l.type == CONNECTED){
-            forward_connected_layer(l, state);
-        } else if(l.type == CROP){
-            forward_crop_layer(l, state);
-        } else if(l.type == COST){
-            forward_cost_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            forward_softmax_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            forward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            forward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            forward_dropout_layer(l, state);
-        } else if(l.type == ROUTE){
-            forward_route_layer(l, net);
-        }
+        l.forward(l, state);
         state.input = l.output;
     }
 }
@@ -138,18 +172,17 @@
     float rate = get_current_rate(net);
     for(i = 0; i < net.n; ++i){
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay);
-        } else if(l.type == DECONVOLUTIONAL){
-            update_deconvolutional_layer(l, rate, net.momentum, net.decay);
-        } else if(l.type == CONNECTED){
-            update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
+        if(l.update){
+            l.update(l, update_batch, rate, net.momentum, net.decay);
         }
     }
 }
 
 float *get_network_output(network net)
 {
+#ifdef GPU
+    if (gpu_index >= 0) return get_network_output_gpu(net);
+#endif 
     int i;
     for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
     return net.layers[i].output;
@@ -161,15 +194,7 @@
     float sum = 0;
     int count = 0;
     for(i = 0; i < net.n; ++i){
-        if(net.layers[i].type == COST){
-            sum += net.layers[i].output[0];
-            ++count;
-        }
-        if(net.layers[i].type == DETECTION){
-            sum += net.layers[i].cost[0];
-            ++count;
-        }
-        if(net.layers[i].type == REGION){
+        if(net.layers[i].cost){
             sum += net.layers[i].cost[0];
             ++count;
         }
@@ -189,7 +214,9 @@
     int i;
     float *original_input = state.input;
     float *original_delta = state.delta;
+    state.workspace = net.workspace;
     for(i = net.n-1; i >= 0; --i){
+        state.index = i;
         if(i == 0){
             state.input = original_input;
             state.delta = original_delta;
@@ -199,41 +226,20 @@
             state.delta = prev.delta;
         }
         layer l = net.layers[i];
-        if(l.type == CONVOLUTIONAL){
-            backward_convolutional_layer(l, state);
-        } else if(l.type == DECONVOLUTIONAL){
-            backward_deconvolutional_layer(l, state);
-        } else if(l.type == NORMALIZATION){
-            backward_normalization_layer(l, state);
-        } else if(l.type == MAXPOOL){
-            if(i != 0) backward_maxpool_layer(l, state);
-        } else if(l.type == AVGPOOL){
-            backward_avgpool_layer(l, state);
-        } else if(l.type == DROPOUT){
-            backward_dropout_layer(l, state);
-        } else if(l.type == DETECTION){
-            backward_detection_layer(l, state);
-        } else if(l.type == REGION){
-            backward_region_layer(l, state);
-        } else if(l.type == SOFTMAX){
-            if(i != 0) backward_softmax_layer(l, state);
-        } else if(l.type == CONNECTED){
-            backward_connected_layer(l, state);
-        } else if(l.type == COST){
-            backward_cost_layer(l, state);
-        } else if(l.type == ROUTE){
-            backward_route_layer(l, net);
-        }
+        if (l.stopbackward) break;
+        l.backward(l, state);
     }
 }
 
 float train_network_datum(network net, float *x, float *y)
 {
-    *net.seen += net.batch;
 #ifdef GPU
     if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
 #endif
     network_state state;
+    *net.seen += net.batch;
+    state.index = 0;
+    state.net = net;
     state.input = x;
     state.delta = 0;
     state.truth = y;
@@ -265,6 +271,7 @@
 
 float train_network(network net, data d)
 {
+    assert(d.X.rows % net.batch == 0);
     int batch = net.batch;
     int n = d.X.rows / batch;
     float *X = calloc(batch*d.X.cols, sizeof(float));
@@ -282,10 +289,13 @@
     return (float)sum/(n*batch);
 }
 
+
 float train_network_batch(network net, data d, int n)
 {
     int i,j;
     network_state state;
+    state.index = 0;
+    state.net = net;
     state.train = 1;
     state.delta = 0;
     float sum = 0;
@@ -310,35 +320,100 @@
     int i;
     for(i = 0; i < net->n; ++i){
         net->layers[i].batch = b;
+#ifdef CUDNN
+        if(net->layers[i].type == CONVOLUTIONAL){
+			cudnn_convolutional_setup(net->layers + i, cudnn_fastest);
+			/*
+			layer *l = net->layers + i;
+            cudnn_convolutional_setup(l, cudnn_fastest);
+			// check for excessive memory consumption 
+			size_t free_byte;
+			size_t total_byte;
+			check_error(cudaMemGetInfo(&free_byte, &total_byte));
+			if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
+				printf(" used slow CUDNN algo without Workspace! \n");
+				cudnn_convolutional_setup(l, cudnn_smallest);
+				l->workspace_size = get_workspace_size(*l);
+			}
+			*/
+        }
+#endif
     }
 }
 
 int resize_network(network *net, int w, int h)
 {
+#ifdef GPU
+    cuda_set_device(net->gpu_index);
+    if(gpu_index >= 0){
+        cuda_free(net->workspace);
+		if (net->input_gpu) {
+			cuda_free(*net->input_gpu);
+			*net->input_gpu = 0;
+			cuda_free(*net->truth_gpu);
+			*net->truth_gpu = 0;
+		}
+    }
+#endif
     int i;
     //if(w == net->w && h == net->h) return 0;
     net->w = w;
     net->h = h;
-    //fprintf(stderr, "Resizing to %d x %d...", w, h);
+    int inputs = 0;
+    size_t workspace_size = 0;
+    //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
     //fflush(stderr);
     for (i = 0; i < net->n; ++i){
         layer l = net->layers[i];
+		//printf(" %d: layer = %d,", i, l.type);
         if(l.type == CONVOLUTIONAL){
             resize_convolutional_layer(&l, w, h);
+        }else if(l.type == CROP){
+            resize_crop_layer(&l, w, h);
         }else if(l.type == MAXPOOL){
             resize_maxpool_layer(&l, w, h);
+        }else if(l.type == REGION){
+            resize_region_layer(&l, w, h);
+		}else if (l.type == YOLO) {
+			resize_yolo_layer(&l, w, h);
+        }else if(l.type == ROUTE){
+            resize_route_layer(&l, net);
+		}else if (l.type == SHORTCUT) {
+			resize_shortcut_layer(&l, w, h);
+		}else if (l.type == UPSAMPLE) {
+			resize_upsample_layer(&l, w, h);
+        }else if(l.type == REORG){
+            resize_reorg_layer(&l, w, h);
         }else if(l.type == AVGPOOL){
             resize_avgpool_layer(&l, w, h);
-            break;
         }else if(l.type == NORMALIZATION){
             resize_normalization_layer(&l, w, h);
+        }else if(l.type == COST){
+            resize_cost_layer(&l, inputs);
         }else{
+			fprintf(stderr, "Resizing type %d \n", (int)l.type);
             error("Cannot resize this type of layer");
         }
+        if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
+        inputs = l.outputs;
         net->layers[i] = l;
         w = l.out_w;
         h = l.out_h;
+        if(l.type == AVGPOOL) break;
     }
+#ifdef GPU
+    if(gpu_index >= 0){
+		printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1);
+        net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
+		printf(" CUDA allocate done! \n");
+    }else {
+        free(net->workspace);
+        net->workspace = calloc(1, workspace_size);
+    }
+#else
+    free(net->workspace);
+    net->workspace = calloc(1, workspace_size);
+#endif
     //fprintf(stderr, " Done!\n");
     return 0;
 }
@@ -418,6 +493,8 @@
 #endif
 
     network_state state;
+    state.net = net;
+    state.index = 0;
     state.input = input;
     state.truth = 0;
     state.train = 0;
@@ -427,6 +504,109 @@
     return out;
 }
 
+int num_detections(network *net, float thresh)
+{
+	int i;
+	int s = 0;
+	for (i = 0; i < net->n; ++i) {
+		layer l = net->layers[i];
+		if (l.type == YOLO) {
+			s += yolo_num_detections(l, thresh);
+		}
+		if (l.type == DETECTION || l.type == REGION) {
+			s += l.w*l.h*l.n;
+		}
+	}
+	return s;
+}
+
+detection *make_network_boxes(network *net, float thresh, int *num)
+{
+	layer l = net->layers[net->n - 1];
+	int i;
+	int nboxes = num_detections(net, thresh);
+	if (num) *num = nboxes;
+	detection *dets = calloc(nboxes, sizeof(detection));
+	for (i = 0; i < nboxes; ++i) {
+		dets[i].prob = calloc(l.classes, sizeof(float));
+		if (l.coords > 4) {
+			dets[i].mask = calloc(l.coords - 4, sizeof(float));
+		}
+	}
+	return dets;
+}
+
+
+void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
+{
+	box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+	float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+	int i, j;
+	for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+	get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
+	for (j = 0; j < l.w*l.h*l.n; ++j) {
+		dets[j].classes = l.classes;
+		dets[j].bbox = boxes[j];
+		dets[j].objectness = 1;
+		for (i = 0; i < l.classes; ++i) {
+			dets[j].prob[i] = probs[j][i];
+		}
+	}
+
+	free(boxes);
+	free_ptrs((void **)probs, l.w*l.h*l.n);
+}
+
+void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
+{
+	int j;
+	for (j = 0; j < net->n; ++j) {
+		layer l = net->layers[j];
+		if (l.type == YOLO) {
+			int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
+			dets += count;
+		}
+		if (l.type == REGION) {
+			custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
+			//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
+			dets += l.w*l.h*l.n;
+		}
+		if (l.type == DETECTION) {
+			get_detection_detections(l, w, h, thresh, dets);
+			dets += l.w*l.h*l.n;
+		}
+	}
+}
+
+detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
+{
+	detection *dets = make_network_boxes(net, thresh, num);
+	fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
+	return dets;
+}
+
+void free_detections(detection *dets, int n)
+{
+	int i;
+	for (i = 0; i < n; ++i) {
+		free(dets[i].prob);
+		if (dets[i].mask) free(dets[i].mask);
+	}
+	free(dets);
+}
+
+float *network_predict_image(network *net, image im)
+{
+	image imr = letterbox_image(im, net->w, net->h);
+	set_batch_network(net, 1);
+	float *p = network_predict(*net, imr.data);
+	free_image(imr);
+	return p;
+}
+
+int network_width(network *net) { return net->w; }
+int network_height(network *net) { return net->h; }
+
 matrix network_predict_data_multi(network net, data test, int n)
 {
     int i,j,b,m;
@@ -525,17 +705,16 @@
     return acc;
 }
 
-float *network_accuracies(network net, data d)
+float *network_accuracies(network net, data d, int n)
 {
     static float acc[2];
     matrix guess = network_predict_data(net, d);
-    acc[0] = matrix_topk_accuracy(d.y, guess,1);
-    acc[1] = matrix_topk_accuracy(d.y, guess,5);
+    acc[0] = matrix_topk_accuracy(d.y, guess, 1);
+    acc[1] = matrix_topk_accuracy(d.y, guess, n);
     free_matrix(guess);
     return acc;
 }
 
-
 float network_accuracy_multi(network net, data d, int n)
 {
     matrix guess = network_predict_data_multi(net, d, n);
@@ -546,15 +725,26 @@
 
 void free_network(network net)
 {
-    int i;
-    for(i = 0; i < net.n; ++i){
-        free_layer(net.layers[i]);
-    }
-    free(net.layers);
-    #ifdef GPU
-    if(*net.input_gpu) cuda_free(*net.input_gpu);
-    if(*net.truth_gpu) cuda_free(*net.truth_gpu);
-    if(net.input_gpu) free(net.input_gpu);
-    if(net.truth_gpu) free(net.truth_gpu);
-    #endif
+	int i;
+	for (i = 0; i < net.n; ++i) {
+		free_layer(net.layers[i]);
+	}
+	free(net.layers);
+#ifdef GPU
+	if (gpu_index >= 0) cuda_free(net.workspace);
+	else free(net.workspace);
+	if (*net.input_gpu) cuda_free(*net.input_gpu);
+	if (*net.truth_gpu) cuda_free(*net.truth_gpu);
+	if (net.input_gpu) free(net.input_gpu);
+	if (net.truth_gpu) free(net.truth_gpu);
+
+	if (*net.input16_gpu) cuda_free(*net.input16_gpu);
+	if (*net.output16_gpu) cuda_free(*net.output16_gpu);
+	if (net.input16_gpu) free(net.input16_gpu);
+	if (net.output16_gpu) free(net.output16_gpu);
+	if (net.max_input16_size) free(net.max_input16_size);
+	if (net.max_output16_size) free(net.max_output16_size);
+#else
+	free(net.workspace);
+#endif
 }

--
Gitblit v1.10.0