From 24f563ce7165c2c44486fe8d0a2caea8d7c5a887 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 17 May 2018 20:26:55 +0000
Subject: [PATCH] Example of usage cv2.imread() in the darknet.py
---
README.md | 29 ++++++++++++++---------------
1 files changed, 14 insertions(+), 15 deletions(-)
diff --git a/README.md b/README.md
index 6b98f50..3ca3412 100644
--- a/README.md
+++ b/README.md
@@ -49,12 +49,13 @@
* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
-* `yolov3.cfg` (236 MB COCO **Yolo v3**) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
-* `yolov2.cfg` (194 MB COCO Yolo v2) - require 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
-* `yolo-voc.cfg` (194 MB VOC Yolo v2) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
-* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - require 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
-* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
-* `yolo9000.cfg` (186 MB Yolo9000-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+* `yolov3.cfg` (236 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
+* `yolov3-tiny.cfg` (34 MB COCO **Yolo v3 tiny**) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights
+* `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
+* `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
+* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
Put it near compiled: darknet.exe
@@ -84,23 +85,21 @@
On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
-* 194 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
-* Alternative method 194 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
+* **Yolo v3** COCO - image: `darknet.exe detector test data/coco.data cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25`
+* Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25`
+* Output coordinates of objects: `darknet.exe detector test data/coco.data yolov3.cfg yolov3.weights -thresh 0.25 dog.jpg -ext_output`
* 194 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
-* 194 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
* 194 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
-* 194 MB COCO-model - **save result to the file res.avi**: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0 -out_filename res.avi`
* 194 MB VOC-model - **save result to the file res.avi**: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0 -out_filename res.avi`
* Alternative method 194 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
-* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
-* 194 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+* 43 MB VOC-model for video: `darknet.exe detector demo data/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights test.mp4 -i 0`
+* **Yolo v3** 236 MB COCO for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 194 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data yolo9000.cfg yolo9000.weights`
-* 186 MB Yolo9000 - video: `darknet.exe detector demo cfg/combine9k.data yolo9000.cfg yolo9000.weights test.mp4`
* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:
- `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show < data/train.txt > result.txt`
+ `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -dont_show -ext_output < data/train.txt > result.txt`
You can comment this line so that each image does not require pressing the button ESC: https://github.com/AlexeyAB/darknet/blob/6ccb41808caf753feea58ca9df79d6367dedc434/src/detector.c#L509
##### For using network video-camera mjpeg-stream with any Android smartphone:
@@ -418,7 +417,7 @@
* desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds
- * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box
+ * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files)
* for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file
--
Gitblit v1.10.0