From 252e3b1916cfaca0783c9e90efaa55eb07b1a8cd Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 06 Nov 2016 00:27:31 +0000
Subject: [PATCH] :charizard: :charizard: :charizard:

---
 src/region_layer.c |  238 ++++++++++++++++++++++++++++++++++-------------------------
 1 files changed, 138 insertions(+), 100 deletions(-)

diff --git a/src/region_layer.c b/src/region_layer.c
index 2185ea5..2702636 100644
--- a/src/region_layer.c
+++ b/src/region_layer.c
@@ -1,6 +1,5 @@
 #include "region_layer.h"
 #include "activations.h"
-#include "softmax_layer.h"
 #include "blas.h"
 #include "box.h"
 #include "cuda.h"
@@ -22,12 +21,23 @@
     l.classes = classes;
     l.coords = coords;
     l.cost = calloc(1, sizeof(float));
+    l.biases = calloc(n*2, sizeof(float));
+    l.bias_updates = calloc(n*2, sizeof(float));
     l.outputs = h*w*n*(classes + coords + 1);
     l.inputs = l.outputs;
     l.truths = 30*(5);
     l.delta = calloc(batch*l.outputs, sizeof(float));
     l.output = calloc(batch*l.outputs, sizeof(float));
+    int i;
+    for(i = 0; i < n*2; ++i){
+        l.biases[i] = .5;
+    }
+
+    l.forward = forward_region_layer;
+    l.backward = backward_region_layer;
 #ifdef GPU
+    l.forward_gpu = forward_region_layer_gpu;
+    l.backward_gpu = backward_region_layer_gpu;
     l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
 #endif
@@ -38,62 +48,44 @@
     return l;
 }
 
-box get_region_box2(float *x, int index, int i, int j, int w, int h)
-{
-    float aspect = exp(x[index+0]);
-    float scale  = logistic_activate(x[index+1]);
-    float move_x = x[index+2];
-    float move_y = x[index+3];
+#define LOG 1
 
-    box b;
-    b.w = sqrt(scale * aspect);
-    b.h = b.w * 1./aspect;
-    b.x = move_x * b.w + (i + .5)/w;
-    b.y = move_y * b.h + (j + .5)/h;
-    return b;
-}
-
-float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta)
-{
-    box pred = get_region_box2(output, index, i, j, w, h);
-    float iou = box_iou(pred, truth);
-    float true_aspect = truth.w/truth.h;
-    float true_scale = truth.w*truth.h;
-
-    float true_dx = (truth.x - (i+.5)/w) / truth.w;
-    float true_dy = (truth.y - (j+.5)/h) / truth.h;
-    delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]);
-    delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1]));
-    delta[index + 2] = true_dx - output[index + 2];
-    delta[index + 3] = true_dy - output[index + 3];
-    return iou;
-}
-
-box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic)
+box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
 {
     box b;
-    b.x = (x[index + 0] + i + .5)/w;
-    b.y = (x[index + 1] + j + .5)/h;
-    b.w = x[index + 2];
-    b.h = x[index + 3];
-    if(logistic){
-        b.w = logistic_activate(x[index + 2]);
-        b.h = logistic_activate(x[index + 3]);
+    b.x = (i + .5)/w + x[index + 0] * biases[2*n];
+    b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
+    if(LOG){
+        b.x = (i + logistic_activate(x[index + 0])) / w;
+        b.y = (j + logistic_activate(x[index + 1])) / h;
     }
-    //if(adjust && b.w < .01) b.w = .01;
-    //if(adjust && b.h < .01) b.h = .01;
+    b.w = exp(x[index + 2]) * biases[2*n];
+    b.h = exp(x[index + 3]) * biases[2*n+1];
     return b;
 }
 
-float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale)
+float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale)
 {
-    box pred = get_region_box(output, index, i, j, w, h, 0, logistic);
+    box pred = get_region_box(x, biases, n, index, i, j, w, h);
     float iou = box_iou(pred, truth);
 
-    delta[index + 0] = scale * (truth.x - pred.x);
-    delta[index + 1] = scale * (truth.y - pred.y);
-    delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1));
-    delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1));
+    float tx = (truth.x - (i + .5)/w) / biases[2*n];
+    float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
+    if(LOG){
+        tx = (truth.x*w - i);
+        ty = (truth.y*h - j);
+    }
+    float tw = log(truth.w / biases[2*n]);
+    float th = log(truth.h / biases[2*n + 1]);
+
+    delta[index + 0] = scale * (tx - x[index + 0]);
+    delta[index + 1] = scale * (ty - x[index + 1]);
+    if(LOG){
+        delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
+        delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
+    }
+    delta[index + 2] = scale * (tw - x[index + 2]);
+    delta[index + 3] = scale * (th - x[index + 3]);
     return iou;
 }
 
@@ -107,8 +99,7 @@
     return (x != x);
 }
 
-#define LOG 1
-
+void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output);
 void forward_region_layer(const region_layer l, network_state state)
 {
     int i,j,b,t,n;
@@ -119,14 +110,17 @@
         for(i = 0; i < l.h*l.w*l.n; ++i){
             int index = size*i + b*l.outputs;
             l.output[index + 4] = logistic_activate(l.output[index + 4]);
-            if(l.softmax){
-                softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
+            if(l.softmax_tree){
+                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
+            } else if(l.softmax){
+                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
             }
         }
     }
     if(!state.train) return;
     memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
     float avg_iou = 0;
+    float recall = 0;
     float avg_cat = 0;
     float avg_obj = 0;
     float avg_anyobj = 0;
@@ -137,7 +131,7 @@
             for (i = 0; i < l.w; ++i) {
                 for (n = 0; n < l.n; ++n) {
                     int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
-                    box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
+                    box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
                     float best_iou = 0;
                     for(t = 0; t < 30; ++t){
                         box truth = float_to_box(state.truth + t*5 + b*l.truths);
@@ -147,24 +141,26 @@
                     }
                     avg_anyobj += l.output[index + 4];
                     l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
-                    if(best_iou > .5) l.delta[index + 4] = 0;
+                    if(best_iou > l.thresh) l.delta[index + 4] = 0;
 
-                    /*
-                    if(*(state.net.seen) < 6400){
+                    if(*(state.net.seen) < 12800){
                         box truth = {0};
                         truth.x = (i + .5)/l.w;
                         truth.y = (j + .5)/l.h;
-                        truth.w = .5;
-                        truth.h = .5;
-                        delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
+                        truth.w = l.biases[2*n];
+                        truth.h = l.biases[2*n+1];
+                        delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
+                        //l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
+                        //l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
+                        //l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
+                        //l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
                     }
-                    */
                 }
             }
         }
         for(t = 0; t < 30; ++t){
             box truth = float_to_box(state.truth + t*5 + b*l.truths);
-            int class = state.truth[t*5 + b*l.truths + 4];
+
             if(!truth.x) break;
             float best_iou = 0;
             int best_index = 0;
@@ -175,11 +171,15 @@
             box truth_shift = truth;
             truth_shift.x = 0;
             truth_shift.y = 0;
-            printf("index %d %d\n",i, j);
+            //printf("index %d %d\n",i, j);
             for(n = 0; n < l.n; ++n){
                 int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
-                box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
-                printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
+                box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
+                if(l.bias_match){
+                    pred.w = l.biases[2*n];
+                    pred.h = l.biases[2*n+1];
+                }
+                //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                 pred.x = 0;
                 pred.y = 0;
                 float iou = box_iou(pred, truth_shift);
@@ -189,9 +189,10 @@
                     best_n = n;
                 }
             }
-            printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
+            //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
 
-            float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale);
+            float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
+            if(iou > .5) recall += 1;
             avg_iou += iou;
 
             //l.delta[best_index + 4] = iou - l.output[best_index + 4];
@@ -200,48 +201,39 @@
             if (l.rescore) {
                 l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
             }
-            //printf("%f\n", l.delta[best_index+1]);
-            /*
-               if(isnan(l.delta[best_index+1])){
-               printf("%f\n", true_scale);
-               printf("%f\n", l.output[best_index + 1]);
-               printf("%f\n", truth.w);
-               printf("%f\n", truth.h);
-               error("bad");
-               }
-             */
-            for(n = 0; n < l.classes; ++n){
-                l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
-                if(n == class) avg_cat += l.output[best_index + 5 + n];
-            }
-            /*
-               if(0){
-               printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
-               printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
-               float aspect = exp(true_aspect);
-               float scale  = logistic_activate(true_scale);
-               float move_x = true_dx;
-               float move_y = true_dy;
 
-               box b;
-               b.w = sqrt(scale * aspect);
-               b.h = b.w * 1./aspect;
-               b.x = move_x * b.w + (i + .5)/l.w;
-               b.y = move_y * b.h + (j + .5)/l.h;
-               printf("%f %f\n", b.x, truth.x);
-               printf("%f %f\n", b.y, truth.y);
-               printf("%f %f\n", b.w, truth.w);
-               printf("%f %f\n", b.h, truth.h);
-            //printf("%f\n", box_iou(b, truth));
+
+            int class = state.truth[t*5 + b*l.truths + 4];
+            if (l.map) class = l.map[class];
+            if(l.softmax_tree){
+                float pred = 1;
+                while(class >= 0){
+                    pred *= l.output[best_index + 5 + class];
+                    int g = l.softmax_tree->group[class];
+                    int i;
+                    int offset = l.softmax_tree->group_offset[g];
+                    for(i = 0; i < l.softmax_tree->group_size[g]; ++i){
+                        int index = best_index + 5 + offset + i;
+                        l.delta[index] = l.class_scale * (0 - l.output[index]);
+                    }
+                    l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]);
+
+                    class = l.softmax_tree->parent[class];
+                }
+                avg_cat += pred;
+            } else {
+                for(n = 0; n < l.classes; ++n){
+                    l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
+                    if(n == class) avg_cat += l.output[best_index + 5 + n];
+                }
             }
-             */
             ++count;
         }
     }
-    printf("\n");
+    //printf("\n");
     reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
     *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count);
+    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
 }
 
 void backward_region_layer(const region_layer l, network_state state)
@@ -249,6 +241,52 @@
     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
+void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+{
+    int i,j,n;
+    float *predictions = l.output;
+    //int per_cell = 5*num+classes;
+    for (i = 0; i < l.w*l.h; ++i){
+        int row = i / l.w;
+        int col = i % l.w;
+        for(n = 0; n < l.n; ++n){
+            int index = i*l.n + n;
+            int p_index = index * (l.classes + 5) + 4;
+            float scale = predictions[p_index];
+            int box_index = index * (l.classes + 5);
+            boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);
+            boxes[index].x *= w;
+            boxes[index].y *= h;
+            boxes[index].w *= w;
+            boxes[index].h *= h;
+
+            int class_index = index * (l.classes + 5) + 5;
+            if(l.softmax_tree){
+                
+                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
+                int found = 0;
+                for(j = l.classes - 1; j >= 0; --j){
+                    if(!found && predictions[class_index + j] > .5){
+                        found = 1;
+                    } else {
+                        predictions[class_index + j] = 0;
+                    }
+                    float prob = predictions[class_index+j];
+                    probs[index][j] = (scale > thresh) ? prob : 0;
+                }
+            }else{
+                for(j = 0; j < l.classes; ++j){
+                    float prob = scale*predictions[class_index+j];
+                    probs[index][j] = (prob > thresh) ? prob : 0;
+                }
+            }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
+        }
+    }
+}
+
 #ifdef GPU
 
 void forward_region_layer_gpu(const region_layer l, network_state state)

--
Gitblit v1.10.0