From 28d5a4a913b662172c03985e57bbd4ecc5e00c73 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 31 May 2015 20:49:50 +0000
Subject: [PATCH] more detection stuff

---
 src/detection.c |  105 +++++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 98 insertions(+), 7 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index a1ba888..0dbedb1 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -21,7 +21,7 @@
             //printf("%d\n", j);
             //printf("Prob: %f\n", box[j]);
             int class = max_index(box+j, classes);
-            if(box[j+class] > .4){
+            if(box[j+class] > .05){
                 //int z;
                 //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
                 printf("%f %s\n", box[j+class], class_names[class]);
@@ -47,6 +47,8 @@
                 int top   = (y-h/2)*im.h;
                 int bot   = (y+h/2)*im.h;
                 draw_box(im, left, top, right, bot, red, green, blue);
+                draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
+                draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
             }
         }
     }
@@ -116,7 +118,11 @@
         float loss = train_network(net, train);
 
         //TODO
+        #ifdef GPU
         float *out = get_network_output_gpu(net);
+        #else
+        float *out = get_network_output(net);
+        #endif
         image im = float_to_image(net.w, net.h, 3, train.X.vals[127]);
         image copy = copy_image(im);
         draw_localization(copy, &(out[63*80]));
@@ -213,7 +219,7 @@
         avg_loss = avg_loss*.9 + loss*.1;
         printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
         if(i == 100){
-            net.learning_rate *= 10;
+            //net.learning_rate *= 10;
         }
         if(i%100==0){
             char buff[256];
@@ -251,8 +257,8 @@
     if (imgnet){
         plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
     }else{
-        plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
-        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
+        //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
+        plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
         //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
         //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
     }
@@ -283,7 +289,7 @@
         if(i == 100){
             net.learning_rate *= 10;
         }
-        if(i%100==0){
+        if(i%1000==0){
             char buff[256];
             sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
             save_weights(net, buff);
@@ -330,8 +336,8 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    //list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt");
-    list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
+    list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
     //list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
     //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt");
     //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
@@ -382,6 +388,89 @@
     }
 }
 
+void do_mask(network net, data d, int offset, int classes, int nuisance, int background, int num_boxes, int per_box)
+{
+    matrix pred = network_predict_data(net, d);
+    int j, k, class;
+    for(j = 0; j < pred.rows; ++j){
+        printf("%d ", offset +  j);
+        for(k = 0; k < pred.cols; k += per_box){
+            float scale = 1.;
+            if (nuisance) scale = 1.-pred.vals[j][k];
+            float max_prob = 0;
+            for (class = 0; class < classes; ++class){
+                float prob = scale*pred.vals[j][k+class+background+nuisance];
+                if(prob > max_prob) max_prob = prob;
+            }
+            printf("%f ", max_prob);
+        }
+        printf("\n");
+    }
+    free_matrix(pred);
+}
+
+void mask_detection(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer layer = get_network_detection_layer(net);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt");
+    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
+    char **paths = (char **)list_to_array(plist);
+
+    int classes = layer.classes;
+    int nuisance = layer.nuisance;
+    int background = (layer.background && !nuisance);
+    int num_boxes = sqrt(get_detection_layer_locations(layer));
+
+    int per_box = 4+classes+background+nuisance;
+    int num_output = num_boxes*num_boxes*per_box;
+
+    int m = plist->size;
+    int i = 0;
+    int splits = 100;
+
+    int nthreads = 4;
+    int t;
+    data *val = calloc(nthreads, sizeof(data));
+    data *buf = calloc(nthreads, sizeof(data));
+    pthread_t *thr = calloc(nthreads, sizeof(data));
+    for(t = 0; t < nthreads; ++t){
+        int num = (i+1+t)*m/splits - (i+t)*m/splits;
+        char **part = paths+((i+t)*m/splits);
+        thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+    }
+
+    clock_t time;
+    for(i = nthreads; i <= splits; i += nthreads){
+        time=clock();
+        for(t = 0; t < nthreads; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+        }
+        for(t = 0; t < nthreads && i < splits; ++t){
+            int num = (i+1+t)*m/splits - (i+t)*m/splits;
+            char **part = paths+((i+t)*m/splits);
+            thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+        }
+
+        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
+        for(t = 0; t < nthreads; ++t){
+            do_mask(net, val[t], (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box);
+            free_data(val[t]);
+        }
+        time=clock();
+    }
+}
+
 void validate_detection_post(char *cfgfile, char *weightfile)
 {
     network net = parse_network_cfg(cfgfile);
@@ -528,6 +617,7 @@
         printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
         draw_detection(im, predictions, 7, "detections");
         free_image(im);
+        cvWaitKey(0);
     }
 }
 
@@ -545,5 +635,6 @@
     else if(0==strcmp(argv[2], "teststuff")) train_detection_teststuff(cfg, weights);
     else if(0==strcmp(argv[2], "trainloc")) train_localization(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
+    else if(0==strcmp(argv[2], "mask")) mask_detection(cfg, weights);
     else if(0==strcmp(argv[2], "validpost")) validate_detection_post(cfg, weights);
 }

--
Gitblit v1.10.0