From 28e21152728cbea617948671df064ec75c7953e5 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sun, 07 Dec 2014 08:41:26 +0000
Subject: [PATCH] Distributed training

---
 Makefile                  |    2 
 src/convolutional_layer.c |    9 
 src/connected_layer.c     |    4 
 src/server.h              |    2 
 src/cnn.c                 |   66 +++++++++-
 src/server.c              |  247 ++++++++++++++++++++++++++--------------
 src/convolutional_layer.h |    4 
 src/opencl.c              |    2 
 src/utils.c               |    3 
 9 files changed, 229 insertions(+), 110 deletions(-)

diff --git a/Makefile b/Makefile
index c2eecd5..3247999 100644
--- a/Makefile
+++ b/Makefile
@@ -28,7 +28,7 @@
 endif
 CFLAGS= $(COMMON) $(OPTS)
 #CFLAGS= $(COMMON) -O0 -g
-LDFLAGS+=`pkg-config --libs opencv` -lm
+LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
 VPATH=./src/
 EXEC=cnn
 OBJDIR=./obj/
diff --git a/src/cnn.c b/src/cnn.c
index 46248ed..7971b95 100644
--- a/src/cnn.c
+++ b/src/cnn.c
@@ -8,6 +8,7 @@
 #include "matrix.h"
 #include "utils.h"
 #include "mini_blas.h"
+#include "server.h"
 
 #include <time.h>
 #include <stdlib.h>
@@ -370,15 +371,52 @@
     }
 }
 
+void train_imagenet_distributed(char *address)
+{
+    float avg_loss = 1;
+    srand(0);
+    network net = parse_network_cfg("cfg/alexnet.client");
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = 1000/net.batch+1;
+    imgs = 1;
+    int i = 0;
+    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
+    list *plist = get_paths("/data/imagenet/cls.train.list");
+    char **paths = (char **)list_to_array(plist);
+    printf("%d\n", plist->size);
+    clock_t time;
+    while(1){
+        i += 1;
+        time=clock();
+        data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
+        //translate_data_rows(train, -144);
+        normalize_data_rows(train);
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+        time=clock();
+#ifdef GPU
+        float loss = train_network_data_gpu(net, train, imgs);
+        client_update(net, address);
+        avg_loss = avg_loss*.9 + loss*.1;
+        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
+#endif
+        free_data(train);
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
+            save_network(net, buff);
+        }
+    }
+}
 
 void train_imagenet()
 {
     float avg_loss = 1;
     //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
-    network net = parse_network_cfg("cfg/alexnet.part");
+    srand(0);
+    network net = parse_network_cfg("cfg/alexnet.cfg");
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     int imgs = 1000/net.batch+1;
-    srand(time(0));
+    imgs=1;
     int i = 0;
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
     list *plist = get_paths("/data/imagenet/cls.train.list");
@@ -450,7 +488,7 @@
         for(c = 0; c < 8; ++c){
             j = (r*8 + c) * 5;
             printf("Prob: %f\n", box[j]);
-            if(box[j] > .05){
+            if(box[j] > .01){
                 int d = 256/8;
                 int y = r*d+box[j+1]*d;
                 int x = c*d+box[j+2]*d;
@@ -715,6 +753,7 @@
     printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
 }
 
+/*
 void test_im2row()
 {
     int h = 20;
@@ -734,6 +773,7 @@
         //image render = float_to_image(mh, mw, mc, matrix);
     }
 }
+*/
 
 void flip_network()
 {
@@ -830,15 +870,23 @@
 #endif
 }
 
-void test_server()
+void run_server()
 {
-    network net = parse_network_cfg("cfg/alexnet.test");
+    srand(0);
+    network net = parse_network_cfg("cfg/alexnet.server");
     server_update(net);
 }
 void test_client()
 {
-    network net = parse_network_cfg("cfg/alexnet.test");
-    client_update(net);
+    network net = parse_network_cfg("cfg/alexnet.client");
+    clock_t time=clock();
+    client_update(net, "localhost");
+    printf("1\n");
+    client_update(net, "localhost");
+    printf("2\n");
+    client_update(net, "localhost");
+    printf("3\n");
+    printf("Transfered: %lf seconds\n", sec(clock()-time));
 }
 
 int main(int argc, char *argv[])
@@ -853,8 +901,8 @@
     else if(0==strcmp(argv[1], "nist")) train_nist();
     else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
     else if(0==strcmp(argv[1], "test")) test_imagenet();
-    else if(0==strcmp(argv[1], "server")) test_server();
-    else if(0==strcmp(argv[1], "client")) test_client();
+    else if(0==strcmp(argv[1], "server")) run_server();
+    else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
     else if(0==strcmp(argv[1], "detect")) test_detection();
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
     else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 05d4a03..bcca631 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -112,12 +112,16 @@
 {
     cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
     cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
 }
 
 void push_connected_layer(connected_layer layer)
 {
     cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
     cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
+    cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
 }
 
 void update_connected_layer_gpu(connected_layer layer)
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index bae06d3..4ca6104 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -59,11 +59,9 @@
 
     layer->filters = calloc(c*n*size*size, sizeof(float));
     layer->filter_updates = calloc(c*n*size*size, sizeof(float));
-    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
 
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
-    layer->bias_momentum = calloc(n, sizeof(float));
     float scale = 1./(size*size*c);
     scale = .01;
     for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
@@ -77,14 +75,13 @@
     layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
     layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
     layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+
     #ifdef GPU
     layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
     layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
-    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
 
     layer->biases_cl = cl_make_array(layer->biases, n);
     layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
-    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
 
     layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
     layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
@@ -394,12 +391,16 @@
 {
     cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cl_read_array(layer.biases_cl, layer.biases, layer.n);
+    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
 }
 
 void push_convolutional_layer(convolutional_layer layer)
 {
     cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
     cl_write_array(layer.biases_cl, layer.biases, layer.n);
+    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
+    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
 }
 
 void update_convolutional_layer_gpu(convolutional_layer layer)
diff --git a/src/convolutional_layer.h b/src/convolutional_layer.h
index 1ceca16..28819bb 100644
--- a/src/convolutional_layer.h
+++ b/src/convolutional_layer.h
@@ -18,11 +18,9 @@
     int pad;
     float *filters;
     float *filter_updates;
-    float *filter_momentum;
 
     float *biases;
     float *bias_updates;
-    float *bias_momentum;
 
     float *col_image;
     float *delta;
@@ -31,11 +29,9 @@
     #ifdef GPU
     cl_mem filters_cl;
     cl_mem filter_updates_cl;
-    cl_mem filter_momentum_cl;
 
     cl_mem biases_cl;
     cl_mem bias_updates_cl;
-    cl_mem bias_momentum_cl;
 
     cl_mem col_image_cl;
     cl_mem delta_cl;
diff --git a/src/opencl.c b/src/opencl.c
index 981067a..55fb56c 100644
--- a/src/opencl.c
+++ b/src/opencl.c
@@ -88,7 +88,7 @@
 
     }
     int index = getpid()%num_devices;
-    index = 0;
+    index = 1;
     printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
     info.device = devices[index];
     fprintf(stderr, "Found %d device(s)\n", num_devices);
diff --git a/src/server.c b/src/server.c
index bcb59f5..c802f84 100644
--- a/src/server.c
+++ b/src/server.c
@@ -1,136 +1,205 @@
+#include <stdio.h> /* needed for sockaddr_in */
+#include <string.h> /* needed for sockaddr_in */
+#include <unistd.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h> /* needed for sockaddr_in */
-#include <stdio.h> /* needed for sockaddr_in */
-#include <string.h> /* needed for sockaddr_in */
 #include <netdb.h>
+#include <pthread.h>
 
+#include "mini_blas.h"
+#include "utils.h"
 #include "server.h"
 #include "connected_layer.h"
+#include "convolutional_layer.h"
 
-#define MESSAGESIZE 50012
-#define NUMFLOATS ((MESSAGESIZE-12)/4)
 #define SERVER_PORT 9876
-#define CLIENT_PORT 9879
 #define STR(x) #x
-#define PARAMETER_SERVER localhost
 
-typedef struct{
-    int layer;
-    int wob;
-    int offset;
-    float data[NUMFLOATS];
-} message;
-
-int socket_setup(int port)
+int socket_setup(int server)
 {
-    static int fd = 0;                         /* our socket */
-    if(fd) return fd;
-    struct sockaddr_in myaddr;      /* our address */
+    int fd = 0;                         /* our socket */
+    struct sockaddr_in me;      /* our address */
 
     /* create a UDP socket */
 
-    if ((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
-        perror("cannot create socket\n");
-        fd=0;
-        return 0;
+    if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
+        error("cannot create socket");
     }
 
     /* bind the socket to any valid IP address and a specific port */
+    if (server == 1){
+        bzero((char *) &me, sizeof(me));
+        me.sin_family = AF_INET;
+        me.sin_addr.s_addr = htonl(INADDR_ANY);
+        me.sin_port = htons(SERVER_PORT);
 
-    memset((char *)&myaddr, 0, sizeof(myaddr));
-    myaddr.sin_family = AF_INET;
-    myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
-    myaddr.sin_port = htons(port);
-
-    if (bind(fd, (struct sockaddr *)&myaddr, sizeof(myaddr)) < 0) {
-        perror("bind failed");
-        fd=0;
-        return 0;
+        if (bind(fd, (struct sockaddr *)&me, sizeof(me)) < 0) {
+            error("bind failed");
+        }
     }
+
     return fd;
 }
 
+typedef struct{
+    int fd;
+    int *counter;
+    network net;
+} connection_info;
+
+void read_all(int fd, char *buffer, size_t bytes)
+{
+    size_t n = 0;
+    while(n < bytes){
+        int next = read(fd, buffer + n, bytes-n);
+        if(next < 0) error("read failed");
+        n += next;
+    }
+}
+
+void write_all(int fd, char *buffer, size_t bytes)
+{
+    size_t n = 0;
+    while(n < bytes){
+        int next = write(fd, buffer + n, bytes-n);
+        if(next < 0) error("write failed");
+        n += next;
+    }
+}
+
+void read_and_add_into(int fd, float *a, int n)
+{
+    float *buff = calloc(n, sizeof(float));
+    read_all(fd, (char*) buff, n*sizeof(float));
+    axpy_cpu(n, 1, buff, 1, a, 1);
+    free(buff);
+}
+
+void handle_connection(void *pointer)
+{
+    printf("New Connection\n");
+    connection_info info = *(connection_info *) pointer;
+    int fd = info.fd;
+    network net = info.net;
+    ++*(info.counter);
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+
+            read_and_add_into(fd, layer.bias_updates, layer.n);
+            int num = layer.n*layer.c*layer.size*layer.size;
+            read_and_add_into(fd, layer.filter_updates, num);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+
+            read_and_add_into(fd, layer.bias_updates, layer.outputs);
+            read_and_add_into(fd, layer.weight_updates, layer.inputs*layer.outputs);
+        }
+    }
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            update_convolutional_layer(layer);
+
+            write_all(fd, (char*) layer.biases, layer.n*sizeof(float));
+            int num = layer.n*layer.c*layer.size*layer.size;
+            write_all(fd, (char*) layer.filters, num*sizeof(float));
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            update_connected_layer(layer);
+            write_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
+            write_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
+        }
+    }
+    printf("Received updates\n");
+    close(fd);
+}
+
 void server_update(network net)
 {
-    int fd = socket_setup(SERVER_PORT);
-    struct sockaddr_in remaddr;     /* remote address */
-    socklen_t addrlen = sizeof(remaddr);            /* length of addresses */
-    int recvlen;                    /* # bytes received */
-    unsigned char buf[MESSAGESIZE];     /* receive buffer */
-    message m;
-
-    int count = 0;
+    int fd = socket_setup(1);
+    int counter = 0;
+    listen(fd, 10);
+    struct sockaddr_in client;     /* remote address */
+    socklen_t client_size = sizeof(client);   /* length of addresses */
+    connection_info info;
+    info.net = net;
+    info.counter = &counter;
     while(1){
-        recvlen = recvfrom(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&remaddr, &addrlen);
-        memcpy(&m, buf, recvlen);
-        //printf("received %d bytes\n", recvlen);
-        //printf("layer %d wob %d offset %d\n", m.layer, m.wob, m.offset);
-        ++count;
-        if(count % 100 == 0) printf("%d\n", count);
+        pthread_t worker;
+        int connection = accept(fd, (struct sockaddr *) &client, &client_size);
+        info.fd = connection;
+        pthread_create(&worker, NULL, (void *) &handle_connection, &info);
     }
-    //printf("%s\n", buf);
 }
 
-void client_update(network net)
+void client_update(network net, char *address)
 {
-    int fd = socket_setup(CLIENT_PORT);
-    struct hostent *hp;     /* host information */
-    struct sockaddr_in servaddr;    /* server address */
-    printf("%ld %ld\n", sizeof(message), MESSAGESIZE);
-    char *my_message = "this is a test message";
+    int fd = socket_setup(0);
 
-    unsigned char buf[MESSAGESIZE];
-    message m;
+    struct hostent *hp;     /* host information */
+    struct sockaddr_in server;    /* server address */
 
     /* fill in the server's address and data */
-    memset((char*)&servaddr, 0, sizeof(servaddr));
-    servaddr.sin_family = AF_INET;
-    servaddr.sin_port = htons(SERVER_PORT);
+    bzero((char*)&server, sizeof(server));
+    server.sin_family = AF_INET;
+    server.sin_port = htons(SERVER_PORT);
 
     /* look up the address of the server given its name */
-    hp = gethostbyname("localhost");
+    hp = gethostbyname(address);
     if (!hp) {
+        perror("no such host");
         fprintf(stderr, "could not obtain address of %s\n", "localhost");
     }
 
     /* put the host's address into the server address structure */
-    memcpy((void *)&servaddr.sin_addr, hp->h_addr_list[0], hp->h_length);
+    memcpy((void *)&server.sin_addr, hp->h_addr_list[0], hp->h_length);
+    if (connect(fd, (struct sockaddr *) &server, sizeof(server)) < 0) {
+        error("error connecting");
+    }
 
     /* send a message to the server */
-    int i, j, k;
+    int i;
     for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            write_all(fd, (char*) layer.bias_updates, layer.n*sizeof(float));
+            int num = layer.n*layer.c*layer.size*layer.size;
+            write_all(fd, (char*) layer.filter_updates, num*sizeof(float));
+            memset(layer.bias_updates, 0, layer.n*sizeof(float));
+            memset(layer.filter_updates, 0, num*sizeof(float));
+        }
         if(net.types[i] == CONNECTED){
-            connected_layer *layer = (connected_layer *) net.layers[i];
-            m.layer = i;
-            m.wob = 0;
-            for(j = 0; j < layer->outputs; j += NUMFLOATS){
-                m.offset = j;
-
-                int num = layer->outputs - j;
-                if(NUMFLOATS < num) num = NUMFLOATS;
-
-                memcpy(m.data, &layer->bias_updates[j], num*sizeof(float));
-                memcpy(buf, &m, MESSAGESIZE);
-
-                if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
-                    perror("sendto failed");
-                }
-            }
-            m.wob = 1;
-            for(j = 0; j < layer->outputs*layer->inputs; j += NUMFLOATS){
-                m.offset = j;
-
-                int num = layer->outputs*layer->inputs - j;
-                if(NUMFLOATS < num) num = NUMFLOATS;
-
-                memcpy(m.data, &layer->weight_updates[j], num*sizeof(float));
-                memcpy(buf, &m, MESSAGESIZE);
-
-                if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
-                    perror("sendto failed");
-                }
-            }
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            write_all(fd, (char *)layer.bias_updates, layer.outputs*sizeof(float));
+            write_all(fd, (char *)layer.weight_updates, layer.outputs*layer.inputs*sizeof(float));
+            memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
+            memset(layer.weight_updates, 0, layer.inputs*layer.outputs*sizeof(float));
         }
     }
+
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+
+            read_all(fd, (char*) layer.biases, layer.n*sizeof(float));
+            int num = layer.n*layer.c*layer.size*layer.size;
+            read_all(fd, (char*) layer.filters, num*sizeof(float));
+
+            push_convolutional_layer(layer);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+
+            read_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
+            read_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
+
+            push_connected_layer(layer);
+        }
+    }
+    close(fd);
 }
diff --git a/src/server.h b/src/server.h
index 3d8a46b..eb9bf28 100644
--- a/src/server.h
+++ b/src/server.h
@@ -1,4 +1,4 @@
 #include "network.h"
 
+void client_update(network net, char *address);
 void server_update(network net);
-void client_update(network net);
diff --git a/src/utils.c b/src/utils.c
index bba6218..20cde39 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -48,7 +48,8 @@
 
 void error(char *s)
 {
-    fprintf(stderr, "Error: %s\n", s);
+    perror(s);
+    //fprintf(stderr, "Error: %s\n", s);
     exit(0);
 }
 

--
Gitblit v1.10.0