From 2afa376bb37b379f27954f74859fbfa63402ea46 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 14 Aug 2015 18:45:11 +0000
Subject: [PATCH] single shot yolo training, separate file

---
 src/detection_layer.c |  212 ++++++++++++++++++++++++++++++++++++++---------------
 1 files changed, 152 insertions(+), 60 deletions(-)

diff --git a/src/detection_layer.c b/src/detection_layer.c
index 68d151a..e48b8b3 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -2,117 +2,209 @@
 #include "activations.h"
 #include "softmax_layer.h"
 #include "blas.h"
+#include "box.h"
 #include "cuda.h"
+#include "utils.h"
 #include <stdio.h>
+#include <string.h>
 #include <stdlib.h>
 
-int get_detection_layer_locations(detection_layer layer)
+int get_detection_layer_locations(detection_layer l)
 {
-    return layer.inputs / (layer.classes+layer.coords+layer.rescore);
+    return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness));
 }
 
-int get_detection_layer_output_size(detection_layer layer)
+int get_detection_layer_output_size(detection_layer l)
 {
-    return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
+    return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords);
 }
 
-detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
+detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness)
 {
-    detection_layer *layer = calloc(1, sizeof(detection_layer));
-
-    layer->batch = batch;
-    layer->inputs = inputs;
-    layer->classes = classes;
-    layer->coords = coords;
-    layer->rescore = rescore;
-    int outputs = get_detection_layer_output_size(*layer);
-    layer->output = calloc(batch*outputs, sizeof(float));
-    layer->delta = calloc(batch*outputs, sizeof(float));
+    detection_layer l = {0};
+    l.type = DETECTION;
+    
+    l.batch = batch;
+    l.inputs = inputs;
+    l.classes = classes;
+    l.coords = coords;
+    l.rescore = rescore;
+    l.objectness = objectness;
+    l.background = background;
+    l.joint = joint;
+    l.cost = calloc(1, sizeof(float));
+    l.does_cost=1;
+    int outputs = get_detection_layer_output_size(l);
+    l.outputs = outputs;
+    l.output = calloc(batch*outputs, sizeof(float));
+    l.delta = calloc(batch*outputs, sizeof(float));
     #ifdef GPU
-    layer->output_gpu = cuda_make_array(0, batch*outputs);
-    layer->delta_gpu = cuda_make_array(0, batch*outputs);
+    l.output_gpu = cuda_make_array(0, batch*outputs);
+    l.delta_gpu = cuda_make_array(0, batch*outputs);
     #endif
 
     fprintf(stderr, "Detection Layer\n");
     srand(0);
 
-    return layer;
+    return l;
 }
 
-void forward_detection_layer(const detection_layer layer, float *in, float *truth)
+void forward_detection_layer(const detection_layer l, network_state state)
 {
     int in_i = 0;
     int out_i = 0;
-    int locations = get_detection_layer_locations(layer);
+    int locations = get_detection_layer_locations(l);
     int i,j;
-    for(i = 0; i < layer.batch*locations; ++i){
-        int mask = (!truth || !truth[out_i + layer.classes - 1]);
+    for(i = 0; i < l.batch*locations; ++i){
+        int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]);
         float scale = 1;
-        if(layer.rescore) scale = in[in_i++];
-        for(j = 0; j < layer.classes; ++j){
-            layer.output[out_i++] = scale*in[in_i++];
+        if(l.joint) scale = state.input[in_i++];
+        else if(l.objectness){
+            l.output[out_i++] = 1-state.input[in_i++];
+            scale = mask;
         }
-        softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
-        activate_array(in+in_i, layer.coords, LOGISTIC);
-        for(j = 0; j < layer.coords; ++j){
-            layer.output[out_i++] = mask*in[in_i++];
+        else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
+
+        for(j = 0; j < l.classes; ++j){
+            l.output[out_i++] = scale*state.input[in_i++];
         }
+        if(l.objectness){
+
+        }else if(l.background){
+            softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
+            activate_array(state.input+in_i, l.coords, LOGISTIC);
+        }
+        for(j = 0; j < l.coords; ++j){
+            l.output[out_i++] = mask*state.input[in_i++];
+        }
+    }
+    float avg_iou = 0;
+    int count = 0;
+    if(l.does_cost && state.train){
+        *(l.cost) = 0;
+        int size = get_detection_layer_output_size(l) * l.batch;
+        memset(l.delta, 0, size * sizeof(float));
+        for (i = 0; i < l.batch*locations; ++i) {
+            int classes = l.objectness+l.classes;
+            int offset = i*(classes+l.coords);
+            for (j = offset; j < offset+classes; ++j) {
+                *(l.cost) += pow(state.truth[j] - l.output[j], 2);
+                l.delta[j] =  state.truth[j] - l.output[j];
+            }
+
+            box truth;
+            truth.x = state.truth[j+0]/7;
+            truth.y = state.truth[j+1]/7;
+            truth.w = pow(state.truth[j+2], 2);
+            truth.h = pow(state.truth[j+3], 2);
+            box out;
+            out.x = l.output[j+0]/7;
+            out.y = l.output[j+1]/7;
+            out.w = pow(l.output[j+2], 2);
+            out.h = pow(l.output[j+3], 2);
+
+            if(!(truth.w*truth.h)) continue;
+            float iou = box_iou(out, truth);
+            avg_iou += iou;
+            ++count;
+            dbox delta = diou(out, truth);
+
+            l.delta[j+0] = 10 * delta.dx/7;
+            l.delta[j+1] = 10 * delta.dy/7;
+            l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w);
+            l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h);
+
+
+            *(l.cost) += pow((1-iou), 2);
+            l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]);
+            l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]);
+            l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]);
+            l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]);
+            if(l.rescore){
+                for (j = offset; j < offset+classes; ++j) {
+                    if(state.truth[j]) state.truth[j] = iou;
+                    l.delta[j] =  state.truth[j] - l.output[j];
+                }
+            }
+        }
+        printf("Avg IOU: %f\n", avg_iou/count);
     }
 }
 
-void backward_detection_layer(const detection_layer layer, float *in, float *delta)
+void backward_detection_layer(const detection_layer l, network_state state)
 {
-    int locations = get_detection_layer_locations(layer);
+    int locations = get_detection_layer_locations(l);
     int i,j;
     int in_i = 0;
     int out_i = 0;
-    for(i = 0; i < layer.batch*locations; ++i){
+    for(i = 0; i < l.batch*locations; ++i){
         float scale = 1;
         float latent_delta = 0;
-        if(layer.rescore) scale = in[in_i++];
-        for(j = 0; j < layer.classes; ++j){
-            latent_delta += in[in_i]*layer.delta[out_i];
-            delta[in_i++] = scale*layer.delta[out_i++];
+        if(l.joint) scale = state.input[in_i++];
+        else if (l.objectness)   state.delta[in_i++] += -l.delta[out_i++];
+        else if (l.background) state.delta[in_i++] += scale*l.delta[out_i++];
+        for(j = 0; j < l.classes; ++j){
+            latent_delta += state.input[in_i]*l.delta[out_i];
+            state.delta[in_i++] += scale*l.delta[out_i++];
         }
-        
-        gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
-        for(j = 0; j < layer.coords; ++j){
-            delta[in_i++] = layer.delta[out_i++];
+
+        if (l.objectness) {
+
+        }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
+        for(j = 0; j < l.coords; ++j){
+            state.delta[in_i++] += l.delta[out_i++];
         }
-        if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
+        if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] += latent_delta;
     }
 }
 
 #ifdef GPU
 
-void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
+void forward_detection_layer_gpu(const detection_layer l, network_state state)
 {
-    int outputs = get_detection_layer_output_size(layer);
-    float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+    int outputs = get_detection_layer_output_size(l);
+    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
     float *truth_cpu = 0;
-    if(truth){
-        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
-        cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
+    if(state.truth){
+        truth_cpu = calloc(l.batch*outputs, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
     }
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
-    forward_detection_layer(layer, in_cpu, truth_cpu);
-    cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
-    free(in_cpu);
-    if(truth_cpu) free(truth_cpu);
+    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_detection_layer(l, cpu_state);
+    cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
+    free(cpu_state.input);
+    if(cpu_state.truth) free(cpu_state.truth);
 }
 
-void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
+void backward_detection_layer_gpu(detection_layer l, network_state state)
 {
-    int outputs = get_detection_layer_output_size(layer);
+    int outputs = get_detection_layer_output_size(l);
 
-    float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
-    float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
+    float *in_cpu    = calloc(l.batch*l.inputs, sizeof(float));
+    float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
+    float *truth_cpu = 0;
+    if(state.truth){
+        truth_cpu = calloc(l.batch*outputs, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
+    }
+    network_state cpu_state;
+    cpu_state.train = state.train;
+    cpu_state.input = in_cpu;
+    cpu_state.truth = truth_cpu;
+    cpu_state.delta = delta_cpu;
 
-    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
-    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
-    backward_detection_layer(layer, in_cpu, delta_cpu);
-    cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
+    cuda_pull_array(state.input, in_cpu,    l.batch*l.inputs);
+    cuda_pull_array(state.delta, delta_cpu, l.batch*l.inputs);
+    cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
+    backward_detection_layer(l, cpu_state);
+    cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
 
+    if (truth_cpu) free(truth_cpu);
     free(in_cpu);
     free(delta_cpu);
 }

--
Gitblit v1.10.0