From 2b4e07f13e94a5fe36dcdb28156c70540eaadcb6 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Fri, 10 Jul 2015 23:38:39 +0000
Subject: [PATCH] small parser change

---
 src/detection.c |  188 +++++++++++++++++++++++++++++++---------------
 1 files changed, 125 insertions(+), 63 deletions(-)

diff --git a/src/detection.c b/src/detection.c
index 84a03b4..94d3700 100644
--- a/src/detection.c
+++ b/src/detection.c
@@ -3,6 +3,7 @@
 #include "cost_layer.h"
 #include "utils.h"
 #include "parser.h"
+#include "box.h"
 
 
 char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
@@ -18,7 +19,8 @@
         for(c = 0; c < side; ++c){
             j = (r*side + c) * elems;
             int class = max_index(box+j, classes);
-            if(box[j+class] > 0){
+            if(box[j+class] > 0.2){
+                int width = box[j+class]*5 + 1;
                 printf("%f %s\n", box[j+class], class_names[class]);
                 float red = get_color(0,class,classes);
                 float green = get_color(1,class,classes);
@@ -38,9 +40,7 @@
                 int right = (x+w/2)*im.w;
                 int top   = (y-h/2)*im.h;
                 int bot   = (y+h/2)*im.h;
-                draw_box(im, left, top, right, bot, red, green, blue);
-                draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
-                draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
+                draw_box_width(im, left, top, right, bot, width, red, green, blue);
             }
         }
     }
@@ -67,6 +67,7 @@
 
     int classes = layer.classes;
     int background = (layer.background || layer.objectness);
+    printf("%d\n", background);
     int side = sqrt(get_detection_layer_locations(layer));
 
     char **paths;
@@ -118,32 +119,67 @@
     }
 }
 
-void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box)
+void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
 {
-    matrix pred = network_predict_data(net, d);
-    int j, k, class;
-    for(j = 0; j < pred.rows; ++j){
-        for(k = 0; k < pred.cols; k += per_box){
-            float scale = 1.;
-            int index = k/per_box;
-            int row = index / num_boxes;
-            int col = index % num_boxes;
-            if (objectness) scale = 1.-pred.vals[j][k];
-            for (class = 0; class < classes; ++class){
-                int ci = k+classes+(background || objectness);
-                float x = (pred.vals[j][ci + 0] + col)/num_boxes;
-                float y = (pred.vals[j][ci + 1] + row)/num_boxes;
-                float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes);
-                float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes);
-                w = pow(w, 2);
-                h = pow(h, 2);
-                float prob = scale*pred.vals[j][k+class+(background || objectness)];
-                if(prob < threshold) continue;
-                printf("%d %d %f %f %f %f %f\n", offset +  j, class, prob, x, y, w, h);
+    int i,j;
+    int per_box = 4+classes+(background || objectness);
+    for (i = 0; i < num_boxes*num_boxes; ++i){
+        float scale = 1;
+        if(objectness) scale = 1-predictions[i*per_box];
+        int offset = i*per_box+(background||objectness);
+        for(j = 0; j < classes; ++j){
+            float prob = scale*predictions[offset+j];
+            probs[i][j] = (prob > thresh) ? prob : 0;
+        }
+        int row = i / num_boxes;
+        int col = i % num_boxes;
+        offset += classes;
+        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
+        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
+        boxes[i].w = pow(predictions[offset + 2], 2) * w;
+        boxes[i].h = pow(predictions[offset + 3], 2) * h;
+    }
+}
+
+void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh)
+{
+    int i, j, k;
+    for(i = 0; i < num_boxes*num_boxes; ++i){
+        int any = 0;
+        for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0);
+        if(!any) {
+            continue;
+        }
+        for(j = i+1; j < num_boxes*num_boxes; ++j){
+            if (box_iou(boxes[i], boxes[j]) > thresh){
+                for(k = 0; k < classes; ++k){
+                    if (probs[i][k] < probs[j][k]) probs[i][k] = 0;
+                    else probs[j][k] = 0;
+                }
             }
         }
     }
-    free_matrix(pred);
+}
+
+void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    for(i = 0; i < num_boxes*num_boxes; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+        
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
 }
 
 void validate_detection(char *cfgfile, char *weightfile)
@@ -152,11 +188,13 @@
     if(weightfile){
         load_weights(&net, weightfile);
     }
+    set_batch_network(&net, 1);
     detection_layer layer = get_network_detection_layer(net);
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
+    char *base = "results/comp4_det_test_";
+    list *plist = get_paths("data/voc.2012test.list");
     char **paths = (char **)list_to_array(plist);
 
     int classes = layer.classes;
@@ -164,49 +202,66 @@
     int background = layer.background;
     int num_boxes = sqrt(get_detection_layer_locations(layer));
 
-    int per_box = 4+classes+(background || objectness);
-    int num_output = num_boxes*num_boxes*per_box;
+    int j;
+    FILE **fps = calloc(classes, sizeof(FILE *));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, class_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
+    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
+    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
-    int i = 0;
-    int splits = 100;
-
-    int nthreads = 4;
+    int i=0;
     int t;
-    data *val = calloc(nthreads, sizeof(data));
-    data *buf = calloc(nthreads, sizeof(data));
-    pthread_t *thr = calloc(nthreads, sizeof(data));
 
-    time_t start = time(0);
+    float thresh = .001;
+    int nms = 1;
+    float iou_thresh = .5;
 
+    int nthreads = 8;
+    image *val = calloc(nthreads, sizeof(image));
+    image *val_resized = calloc(nthreads, sizeof(image));
+    image *buf = calloc(nthreads, sizeof(image));
+    image *buf_resized = calloc(nthreads, sizeof(image));
+    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
     for(t = 0; t < nthreads; ++t){
-        int num = (i+1+t)*m/splits - (i+t)*m/splits;
-        char **part = paths+((i+t)*m/splits);
-        thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
     }
-
-    for(i = nthreads; i <= splits; i += nthreads){
-        for(t = 0; t < nthreads; ++t){
+    time_t start = time(0);
+    for(i = nthreads; i < m+nthreads; i += nthreads){
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
             pthread_join(thr[t], 0);
             val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
         }
-        for(t = 0; t < nthreads && i < splits; ++t){
-            int num = (i+1+t)*m/splits - (i+t)*m/splits;
-            char **part = paths+((i+t)*m/splits);
-            thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
+        for(t = 0; t < nthreads && i+t < m; ++t){
+            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
         }
-
-        fprintf(stderr, "%d\n", i);
-        for(t = 0; t < nthreads; ++t){
-            predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box);
-            free_data(val[t]);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            char *path = paths[i+t-nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            float *predictions = network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            convert_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
+            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
+            print_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
         }
     }
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
 
-void test_detection(char *cfgfile, char *weightfile)
+void test_detection(char *cfgfile, char *weightfile, char *filename)
 {
+
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -217,24 +272,30 @@
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
-    char filename[256];
+    char input[256];
     while(1){
-        printf("Image Path: ");
-        fflush(stdout);
-        fgets(filename, 256, stdin);
-        strtok(filename, "\n");
-        image im = load_image_color(filename,0,0);
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            fgets(input, 256, stdin);
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
         image sized = resize_image(im, im_size, im_size);
         float *X = sized.data;
         time=clock();
         float *predictions = network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         draw_detection(im, predictions, 7, "predictions");
         free_image(im);
         free_image(sized);
-        #ifdef OPENCV
+#ifdef OPENCV
         cvWaitKey(0);
-        #endif
+        cvDestroyAllWindows();
+#endif
+        if (filename) break;
     }
 }
 
@@ -247,7 +308,8 @@
 
     char *cfg = argv[3];
     char *weights = (argc > 4) ? argv[4] : 0;
-    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights, filename);
     else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
     else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
 }

--
Gitblit v1.10.0