From 2c6d4ba1d5cffd26c5c9527175d565a81226e18d Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 19 Feb 2014 21:41:44 +0000
Subject: [PATCH] Single image feature extraction for VOC

---
 src/tests.c |  247 +++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 229 insertions(+), 18 deletions(-)

diff --git a/src/tests.c b/src/tests.c
index 00cd1a1..c72e900 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -19,7 +19,7 @@
 
 void test_convolve()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     image kernel = make_random_image(3,3,dog.c);
     image edge = make_image(dog.h, dog.w, 1);
@@ -35,7 +35,7 @@
 
 void test_convolve_matrix()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     printf("dog channels %d\n", dog.c);
     
     int size = 11;
@@ -64,7 +64,7 @@
 
 void test_color()
 {
-    image dog = load_image("test_color.png");
+    image dog = load_image("test_color.png", 300, 400);
     show_image_layers(dog, "Test Color");
 }
 
@@ -124,13 +124,13 @@
 
 void test_load()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     show_image(dog, "Test Load");
     show_image_layers(dog, "Test Load");
 }
 void test_upsample()
 {
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg", 300, 400);
     int n = 3;
     image up = make_image(n*dog.h, n*dog.w, dog.c);
     upsample_image(dog, n, up);
@@ -141,7 +141,7 @@
 void test_rotate()
 {
     int i;
-    image dog = load_image("dog.jpg");
+    image dog = load_image("dog.jpg",300,400);
     clock_t start = clock(), end;
     for(i = 0; i < 1001; ++i){
         rotate_image(dog);
@@ -184,24 +184,39 @@
 void test_data()
 {
     char *labels[] = {"cat","dog"};
-    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
+    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
     free_data(train);
 }
 
 void test_full()
 {
     network net = parse_network_cfg("full.cfg");
-    srand(0);
-    int i = 0;
+    srand(2222222);
+    int i = 800;
     char *labels[] = {"cat","dog"};
     float lr = .00001;
     float momentum = .9;
     float decay = 0.01;
     while(i++ < 1000 || 1){
-        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
-        train_network(net, train, lr, momentum, decay);
+        visualize_network(net);
+        cvWaitKey(100);
+        data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
+        image im = float_to_image(256, 256, 3,train.X.vals[0]);
+        show_image(im, "input");
+        cvWaitKey(100);
+        //scale_data_rows(train, 1./255.);
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
         free_data(train);
-        printf("Round %d\n", i);
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "backup_%d.cfg", i);
+            //save_network(net, buff);
+        }
+        //lr *= .99;
     }
 }
 
@@ -218,7 +233,7 @@
     int count = 0;
     float lr = .0005;
     float momentum = .9;
-    float decay = 0.01;
+    float decay = 0.001;
     clock_t start = clock(), end;
     while(++count <= 100){
         //visualize_network(net);
@@ -227,7 +242,7 @@
         end = clock();
         printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
         start=end;
-        cvWaitKey(100);
+        //cvWaitKey(100);
         //lr /= 2; 
         if(count%5 == 0){
             float train_acc = network_accuracy(net, train);
@@ -235,7 +250,7 @@
             float test_acc = network_accuracy(net, test);
             fprintf(stderr, "TEST: %f\n\n", test_acc);
             printf("%d, %f, %f\n", count, train_acc, test_acc);
-            lr *= .5;
+            //lr *= .5;
         }
     }
 }
@@ -345,11 +360,204 @@
     int i;
     for(i = 0; i < 1000; ++i){
         im2col_cpu(test.data,  c,  h,  w,  size,  stride, matrix);
-        image render = float_to_image(mh, mw, mc, matrix);
+        //image render = float_to_image(mh, mw, mc, matrix);
     }
 }
 
-int main()
+void train_VOC()
+{
+    network net = parse_network_cfg("cfg/voc_start.cfg");
+    srand(2222222);
+    int i = 20;
+    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
+    float lr = .00001;
+    float momentum = .9;
+    float decay = 0.01;
+    while(i++ < 1000 || 1){
+        data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
+
+        image im = float_to_image(300, 400, 3,train.X.vals[0]);
+        show_image(im, "input");
+        visualize_network(net);
+        cvWaitKey(100);
+
+        normalize_data_rows(train);
+        clock_t start = clock(), end;
+        float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
+        end = clock();
+        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
+        free_data(train);
+        if(i%10==0){
+            char buff[256];
+            sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
+            save_network(net, buff);
+        }
+        //lr *= .99;
+    }
+}
+
+int voc_size(int x)
+{
+    x = x-1+3;
+    x = x-1+3;
+    x = (x-1)*2+1;
+    x = x-1+5;
+    x = (x-1)*2+1;
+    x = (x-1)*4+11;
+    return x;
+}
+
+image features_output_size(network net, IplImage *src, int outh, int outw)
+{
+    int h = voc_size(outh);
+    int w = voc_size(outw);
+
+    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
+    cvResize(src, sized, CV_INTER_LINEAR);
+    image im = ipl_to_image(sized);
+    reset_network_size(net, im.h, im.w, im.c);
+    forward_network(net, im.data);
+    image out = get_network_image_layer(net, 5);
+    //printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
+    free_image(im);
+    cvReleaseImage(&sized);
+    return copy_image(out);
+}
+
+void features_VOC(int part, int total)
+{
+    int i,j, count = 0;
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    char *path_file = "images/VOC2012/all_paths.txt";
+    char *out_dir = "voc_features/";
+    list *paths = get_paths(path_file);
+    node *n = paths->front;
+    int size = paths->size;
+    for(count = 0; count < part*size/total; ++count) n = n->next;
+    while(n && count++ < (part+1)*size/total){
+        char *path = (char *)n->val;
+        char buff[1024];
+        sprintf(buff, "%s%s.txt",out_dir, path);
+        printf("%s\n", path);
+        FILE *fp = fopen(buff, "w");
+        if(fp == 0) file_error(buff);
+
+        IplImage* src = 0;
+        if( (src = cvLoadImage(path,-1)) == 0 )
+        {
+            printf("Cannot load file image %s\n", path);
+            exit(0);
+        }
+        int w = src->width;
+        int h = src->height;
+        int sbin = 8;
+        int interval = 10;
+        double scale = pow(2., 1./interval);
+        int m = (w<h)?w:h;
+        int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+        image *ims = calloc(max_scale+interval, sizeof(image));
+
+        for(i = 0; i < interval; ++i){
+            double factor = 1./pow(scale, i);
+            double ih =  round(h*factor);
+            double iw =  round(w*factor);
+            int ex_h = round(ih/4.) - 2;
+            int ex_w = round(iw/4.) - 2;
+            ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+            for(j = i+interval; j < max_scale; j += interval){
+                factor /= 2.;
+                ih =  round(h*factor);
+                iw =  round(w*factor);
+                ex_h = round(ih/8.) - 2;
+                ex_w = round(iw/8.) - 2;
+                ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+            }
+        }
+        for(i = 0; i < max_scale+interval; ++i){
+            image out = ims[i];
+            //printf("%d, %d\n", out.h, out.w);
+            fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+            for(j = 0; j < out.c*out.h*out.w; ++j){
+                if(j != 0)fprintf(fp, ",");
+                fprintf(fp, "%g", out.data[j]);
+            }
+            fprintf(fp, "\n");
+            free_image(out);
+        }
+        free(ims);
+        fclose(fp);
+        cvReleaseImage(&src);
+        n = n->next;
+    }
+}
+
+void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
+{
+    int i,j;
+    network net = parse_network_cfg("cfg/voc_features.cfg");
+    char image_path[1024];
+    sprintf(image_path, "%s%s",image_dir, image_file);
+    char out_path[1024];
+    sprintf(out_path, "%s%s.txt",out_dir, image_file);
+    printf("%s\n", image_file);
+    FILE *fp = fopen(out_path, "w");
+    if(fp == 0) file_error(out_path);
+
+    IplImage* src = 0;
+    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
+    int w = src->width;
+    int h = src->height;
+    int sbin = 8;
+    int interval = 10;
+    double scale = pow(2., 1./interval);
+    int m = (w<h)?w:h;
+    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
+    image *ims = calloc(max_scale+interval, sizeof(image));
+
+    for(i = 0; i < interval; ++i){
+        double factor = 1./pow(scale, i);
+        double ih =  round(h*factor);
+        double iw =  round(w*factor);
+        int ex_h = round(ih/4.) - 2;
+        int ex_w = round(iw/4.) - 2;
+        ims[i] = features_output_size(net, src, ex_h, ex_w);
+
+        ih =  round(h*factor);
+        iw =  round(w*factor);
+        ex_h = round(ih/8.) - 2;
+        ex_w = round(iw/8.) - 2;
+        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
+        for(j = i+interval; j < max_scale; j += interval){
+            factor /= 2.;
+            ih =  round(h*factor);
+            iw =  round(w*factor);
+            ex_h = round(ih/8.) - 2;
+            ex_w = round(iw/8.) - 2;
+            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
+        }
+    }
+    for(i = 0; i < max_scale+interval; ++i){
+        image out = ims[i];
+        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
+        for(j = 0; j < out.c*out.h*out.w; ++j){
+            if(j != 0)fprintf(fp, ",");
+            fprintf(fp, "%g", out.data[j]);
+        }
+        fprintf(fp, "\n");
+        free_image(out);
+    }
+    free(ims);
+    fclose(fp);
+    cvReleaseImage(&src);
+}
+
+int main(int argc, char *argv[])
 {
     //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
 
@@ -358,8 +566,11 @@
     //    test_im2row();
     //test_split();
     //test_ensemble();
-    test_nist();
+    //test_nist();
     //test_full();
+    //train_VOC();
+    features_VOC_image(argv[1], argv[2], argv[3]);
+    printf("Success!\n");
     //test_random_preprocess();
     //test_random_classify();
     //test_parser();

--
Gitblit v1.10.0