From 2db9fbef2bd7d35a547d0018a9850f6b249c524f Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 13 Nov 2013 18:50:38 +0000
Subject: [PATCH] Parsing, image loading, lots of stuff

---
 src/network.c |  191 +++++++++++++++++++++++++++++++++++++++++++----
 1 files changed, 175 insertions(+), 16 deletions(-)

diff --git a/src/network.c b/src/network.c
index e55535c..a77d607 100644
--- a/src/network.c
+++ b/src/network.c
@@ -1,48 +1,207 @@
+#include <stdio.h>
 #include "network.h"
 #include "image.h"
+#include "data.h"
 
 #include "connected_layer.h"
 #include "convolutional_layer.h"
 #include "maxpool_layer.h"
 
-void run_network(image input, network net)
+network make_network(int n)
+{
+    network net;
+    net.n = n;
+    net.layers = calloc(net.n, sizeof(void *));
+    net.types = calloc(net.n, sizeof(LAYER_TYPE));
+    return net;
+}
+
+void forward_network(network net, double *input)
 {
     int i;
-    double *input_d = 0;
     for(i = 0; i < net.n; ++i){
         if(net.types[i] == CONVOLUTIONAL){
             convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            run_convolutional_layer(input, layer);
+            forward_convolutional_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
         else if(net.types[i] == CONNECTED){
             connected_layer layer = *(connected_layer *)net.layers[i];
-            run_connected_layer(input_d, layer);
-            input_d = layer.output;
+            forward_connected_layer(layer, input);
+            input = layer.output;
         }
         else if(net.types[i] == MAXPOOL){
             maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            run_maxpool_layer(input, layer);
+            forward_maxpool_layer(layer, input);
             input = layer.output;
-            input_d = layer.output.data;
         }
     }
 }
 
+void update_network(network net, double step)
+{
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            update_convolutional_layer(layer, step);
+        }
+        else if(net.types[i] == MAXPOOL){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            update_connected_layer(layer, step, .3, 0);
+        }
+    }
+}
+
+double *get_network_output_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.output;
+    } else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.output;
+    } else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.output;
+    }
+    return 0;
+}
+double *get_network_output(network net)
+{
+    return get_network_output_layer(net, net.n-1);
+}
+
+double *get_network_delta_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return layer.delta;
+    } else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.delta;
+    }
+    return 0;
+}
+
+double *get_network_delta(network net)
+{
+    return get_network_delta_layer(net, net.n-1);
+}
+
+void learn_network(network net, double *input)
+{
+    int i;
+    double *prev_input;
+    double *prev_delta;
+    for(i = net.n-1; i >= 0; --i){
+        if(i == 0){
+            prev_input = input;
+            prev_delta = 0;
+        }else{
+            prev_input = get_network_output_layer(net, i-1);
+            prev_delta = get_network_delta_layer(net, i-1);
+        }
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            learn_convolutional_layer(layer, prev_input);
+            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
+        }
+        else if(net.types[i] == MAXPOOL){
+            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        }
+        else if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *)net.layers[i];
+            learn_connected_layer(layer, prev_input);
+            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
+        }
+    }
+}
+
+void train_network_batch(network net, batch b)
+{
+    int i,j;
+    int k = get_network_output_size(net);
+    int correct = 0;
+    for(i = 0; i < b.n; ++i){
+        forward_network(net, b.images[i].data);
+        image o = get_network_image(net);
+        double *output = get_network_output(net);
+        double *delta = get_network_delta(net);
+        for(j = 0; j < k; ++j){
+            //printf("%f %f\n", b.truth[i][j], output[j]);
+            delta[j] = b.truth[i][j]-output[j];
+            if(fabs(delta[j]) < .5) ++correct;
+            //printf("%f\n",  output[j]);
+        }
+        learn_network(net, b.images[i].data);
+        update_network(net, .00001);
+    }
+    printf("Accuracy: %f\n", (double)correct/b.n);
+}
+
+int get_network_output_size_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        image output = get_convolutional_image(layer);
+        return output.h*output.w*output.c;
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        image output = get_maxpool_image(layer);
+        return output.h*output.w*output.c;
+    }
+    else if(net.types[i] == CONNECTED){
+        connected_layer layer = *(connected_layer *)net.layers[i];
+        return layer.outputs;
+    }
+    return 0;
+}
+
+int get_network_output_size(network net)
+{
+    int i = net.n-1;
+    return get_network_output_size_layer(net, i);
+}
+
+image get_network_image_layer(network net, int i)
+{
+    if(net.types[i] == CONVOLUTIONAL){
+        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+        return get_convolutional_image(layer);
+    }
+    else if(net.types[i] == MAXPOOL){
+        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
+        return get_maxpool_image(layer);
+    }
+    return make_image(0,0,0);
+}
+
 image get_network_image(network net)
 {
     int i;
     for(i = net.n-1; i >= 0; --i){
-        if(net.types[i] == CONVOLUTIONAL){
-            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
-            return layer.output;
-        }
-        else if(net.types[i] == MAXPOOL){
-            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
-            return layer.output;
-        }
+        image m = get_network_image_layer(net, i);
+        if(m.h != 0) return m;
     }
     return make_image(1,1,1);
 }
 
+void visualize_network(network net)
+{
+    int i;
+    for(i = 0; i < 1; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
+            visualize_convolutional_layer(layer);
+        }
+    } 
+}
+

--
Gitblit v1.10.0