From 2ea63c0e99a5358eaf38785ea83b9c5923fcc9cd Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Thu, 13 Mar 2014 04:57:34 +0000
Subject: [PATCH] Better VOC handling and resizing

---
 src/convolutional_layer.c |  324 +++++++++++++++++++++++++++++++++++++++++++++++------
 1 files changed, 287 insertions(+), 37 deletions(-)

diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index f83622b..f7c9c10 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -1,64 +1,215 @@
 #include "convolutional_layer.h"
+#include "utils.h"
+#include "mini_blas.h"
+#include <stdio.h>
 
-double convolution_activation(double x)
+int convolutional_out_height(convolutional_layer layer)
 {
-    return x*(x>0);
+    return (layer.h-layer.size)/layer.stride + 1;
 }
 
-double convolution_gradient(double x)
+int convolutional_out_width(convolutional_layer layer)
 {
-    return (x>=0);
+    return (layer.w-layer.size)/layer.stride + 1;
 }
 
-convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
+image get_convolutional_image(convolutional_layer layer)
+{
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.output);
+}
+
+image get_convolutional_delta(convolutional_layer layer)
+{
+    int h,w,c;
+    h = convolutional_out_height(layer);
+    w = convolutional_out_width(layer);
+    c = layer.n;
+    return float_to_image(h,w,c,layer.delta);
+}
+
+convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
 {
     int i;
-    convolutional_layer layer;
-    layer.n = n;
-    layer.stride = stride;
-    layer.kernels = calloc(n, sizeof(image));
-    layer.kernel_updates = calloc(n, sizeof(image));
+    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
+    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    layer->n = n;
+    layer->batch = batch;
+    layer->stride = stride;
+    layer->size = size;
+
+    layer->filters = calloc(c*n*size*size, sizeof(float));
+    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
+    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
+
+    layer->biases = calloc(n, sizeof(float));
+    layer->bias_updates = calloc(n, sizeof(float));
+    layer->bias_momentum = calloc(n, sizeof(float));
+    float scale = 1./(size*size*c);
+    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
     for(i = 0; i < n; ++i){
-        layer.kernels[i] = make_random_kernel(size, c);
-        layer.kernel_updates[i] = make_random_kernel(size, c);
+        //layer->biases[i] = rand_normal()*scale + scale;
+        layer->biases[i] = 0;
     }
-    layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
-    layer.upsampled = make_image(h,w,n);
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
+    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
+    layer->activation = activation;
+
+    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
+    srand(0);
+
     return layer;
 }
 
-void run_convolutional_layer(const image input, const convolutional_layer layer)
+void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
+{
+    layer->h = h;
+    layer->w = w;
+    layer->c = c;
+    int out_h = convolutional_out_height(*layer);
+    int out_w = convolutional_out_width(*layer);
+
+    layer->col_image = realloc(layer->col_image,
+                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
+    layer->output = realloc(layer->output,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+    layer->delta  = realloc(layer->delta,
+                                layer->batch*out_h * out_w * layer->n*sizeof(float));
+}
+
+void forward_convolutional_layer(const convolutional_layer layer, float *in)
 {
     int i;
-    for(i = 0; i < layer.n; ++i){
-        convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+    int m = layer.n;
+    int k = layer.size*layer.size*layer.c;
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
+
+    memset(layer.output, 0, m*n*sizeof(float));
+
+    float *a = layer.filters;
+    float *b = layer.col_image;
+    float *c = layer.output;
+    for(i = 0; i < layer.batch; ++i){
+        im2col_cpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
     }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = convolution_activation(input.data[i]);
+    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
+
+    for(i = 0; i < m*n; ++i){
+        layer.output[i] = activate(layer.output[i], layer.activation);
+    }
+    //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
+
+}
+
+void gradient_delta_convolutional_layer(convolutional_layer layer)
+{
+    int i;
+    int size = convolutional_out_height(layer)*
+                convolutional_out_width(layer)*
+                layer.n*
+                layer.batch;
+    for(i = 0; i < size; ++i){
+        layer.delta[i] *= gradient(layer.output[i], layer.activation);
     }
 }
 
-void backpropagate_layer(image input, convolutional_layer layer)
+void learn_bias_convolutional_layer(convolutional_layer layer)
 {
-    int i;
-    zero_image(input);
-    for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+    int i,j,b;
+    int size = convolutional_out_height(layer)
+                *convolutional_out_width(layer);
+    for(b = 0; b < layer.batch; ++b){
+        for(i = 0; i < layer.n; ++i){
+            float sum = 0;
+            for(j = 0; j < size; ++j){
+                sum += layer.delta[j+size*(i+b*layer.n)];
+            }
+            layer.bias_updates[i] += sum/size;
+        }
     }
 }
 
-void backpropagate_layer_convolve(image input, convolutional_layer layer)
+void learn_convolutional_layer(convolutional_layer layer)
 {
+    gradient_delta_convolutional_layer(layer);
+    learn_bias_convolutional_layer(layer);
+    int m = layer.n;
+    int n = layer.size*layer.size*layer.c;
+    int k = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
+
+    float *a = layer.delta;
+    float *b = layer.col_image;
+    float *c = layer.filter_updates;
+
+    gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
+}
+
+void backward_convolutional_layer(convolutional_layer layer, float *delta)
+{
+    int i;
+    int m = layer.size*layer.size*layer.c;
+    int k = layer.n;
+    int n = convolutional_out_height(layer)*
+            convolutional_out_width(layer)*
+            layer.batch;
+
+    float *a = layer.filters;
+    float *b = layer.delta;
+    float *c = layer.col_image;
+
+
+    memset(c, 0, m*n*sizeof(float));
+    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
+
+    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
+    for(i = 0; i < layer.batch; ++i){
+        col2im_cpu(c+i*n/layer.batch,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta+i*n/layer.batch);
+    }
+}
+
+void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
+{
+    int i;
+    int size = layer.size*layer.size*layer.c*layer.n;
+    for(i = 0; i < layer.n; ++i){
+        layer.biases[i] += step*layer.bias_updates[i];
+        layer.bias_updates[i] *= momentum;
+    }
+    for(i = 0; i < size; ++i){
+        layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]);
+        layer.filter_updates[i] *= momentum;
+    }
+}
+/*
+
+void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
+{
+    image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
+    image out_delta = get_convolutional_delta(layer);
     int i,j;
     for(i = 0; i < layer.n; ++i){
         rotate_image(layer.kernels[i]);
     }
 
-    zero_image(input);
-    upsample_image(layer.output, layer.stride, layer.upsampled);
-    for(j = 0; j < input.c; ++j){
+    zero_image(in_delta);
+    upsample_image(out_delta, layer.stride, layer.upsampled);
+    for(j = 0; j < in_delta.c; ++j){
         for(i = 0; i < layer.n; ++i){
-            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j);
+            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
         }
     }
 
@@ -67,20 +218,119 @@
     }
 }
 
-void error_convolutional_layer(image input, convolutional_layer layer)
+
+void learn_convolutional_layer(convolutional_layer layer, float *input)
 {
     int i;
+    image in_image = float_to_image(layer.h, layer.w, layer.c, input);
+    image out_delta = get_convolutional_delta(layer);
+    gradient_delta_convolutional_layer(layer);
     for(i = 0; i < layer.n; ++i){
-        kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output);
+        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
+        layer.bias_updates[i] += avg_image_layer(out_delta, i);
     }
-    image old_input = copy_image(input);
-    zero_image(input);
+}
+
+void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
+{
+    int i,j;
     for(i = 0; i < layer.n; ++i){
-        back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
+        layer.bias_momentum[i] = step*(layer.bias_updates[i]) 
+                                + momentum*layer.bias_momentum[i];
+        layer.biases[i] += layer.bias_momentum[i];
+        layer.bias_updates[i] = 0;
+        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
+        for(j = 0; j < pixels; ++j){
+            layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) 
+                                                + momentum*layer.kernel_momentum[i].data[j];
+            layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
+        }
+        zero_image(layer.kernel_updates[i]);
     }
-    for(i = 0; i < input.h*input.w*input.c; ++i){
-        input.data[i] = input.data[i]*convolution_gradient(input.data[i]);
+}
+*/
+
+void test_convolutional_layer()
+{
+    convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
+    float input[] =    {1,2,3,4,
+                        5,6,7,8,
+                        9,10,11,12,
+                        13,14,15,16};
+    float filter[] =   {.5, 0, .3,
+                        0  , 1,  0,
+                        .2 , 0,  1};
+    float delta[] =    {1, 2,
+                        3,  4};
+    float in_delta[] = {.5,1,.3,.6,
+                        5,6,7,8,
+                        9,10,11,12,
+                        13,14,15,16};
+    l.filters = filter;
+    forward_convolutional_layer(l, input);
+    l.delta = delta;
+    learn_convolutional_layer(l);
+    image filter_updates = float_to_image(3,3,1,l.filter_updates);
+    print_image(filter_updates);
+    printf("Delta:\n");
+    backward_convolutional_layer(l, in_delta);
+    pm(4,4,in_delta);
+}
+
+image get_convolutional_filter(convolutional_layer layer, int i)
+{
+    int h = layer.size;
+    int w = layer.size;
+    int c = layer.c;
+    return float_to_image(h,w,c,layer.filters+i*h*w*c);
+}
+
+void visualize_convolutional_layer(convolutional_layer layer, char *window)
+{
+    int color = 1;
+    int border = 1;
+    int h,w,c;
+    int size = layer.size;
+    h = size;
+    w = (size + border) * layer.n - border;
+    c = layer.c;
+    if(c != 3 || !color){
+        h = (h+border)*c - border;
+        c = 1;
     }
-    free_image(old_input);
+
+    image filters = make_image(h,w,c);
+    int i,j;
+    for(i = 0; i < layer.n; ++i){
+        int w_offset = i*(size+border);
+        image k = get_convolutional_filter(layer, i);
+        //printf("%f ** ", layer.biases[i]);
+        //print_image(k);
+        image copy = copy_image(k);
+        normalize_image(copy);
+        for(j = 0; j < k.c; ++j){
+            //set_pixel(copy,0,0,j,layer.biases[i]);
+        }
+        if(c == 3 && color){
+            embed_image(copy, filters, 0, w_offset);
+        }
+        else{
+            for(j = 0; j < k.c; ++j){
+                int h_offset = j*(size+border);
+                image layer = get_image_layer(k, j);
+                embed_image(layer, filters, h_offset, w_offset);
+                free_image(layer);
+            }
+        }
+        free_image(copy);
+    }
+    image delta = get_convolutional_delta(layer);
+    image dc = collapse_image_layers(delta, 1);
+    char buff[256];
+    sprintf(buff, "%s: Delta", window);
+    show_image(dc, buff);
+    free_image(dc);
+    show_image(filters, window);
+    free_image(filters);
 }
 

--
Gitblit v1.10.0