From 2f62fe33c913cd9484fe7f2486889d12292c66e0 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Sat, 07 Feb 2015 02:53:53 +0000
Subject: [PATCH] saving weight files as binaries, hell yeah

---
 src/utils.h               |    2 
 Makefile                  |    6 
 src/convolutional_layer.c |    3 
 src/connected_layer.c     |    2 
 src/parser.c              |   80 +++++++++++++++++++
 src/parser.h              |    2 
 src/server.c              |   22 -----
 src/darknet.c             |   55 ++++++++++---
 src/utils.c               |   22 +++++
 9 files changed, 147 insertions(+), 47 deletions(-)

diff --git a/Makefile b/Makefile
index f685bb4..879ff8e 100644
--- a/Makefile
+++ b/Makefile
@@ -12,13 +12,13 @@
 LDFLAGS=`pkg-config --libs opencv` -lm -pthread
 COMMON=`pkg-config --cflags opencv` -I/usr/local/cuda/include/
 CFLAGS=-Wall -Wfatal-errors
-CFLAGS+=$(OPTS)
 
 ifeq ($(DEBUG), 1) 
-COMMON+=-O0 -g
-CFLAGS+=-O0 -g
+OPTS=-O0 -g
 endif
 
+CFLAGS+=$(OPTS)
+
 ifeq ($(GPU), 1) 
 COMMON+=-DGPU
 CFLAGS+=-DGPU
diff --git a/src/connected_layer.c b/src/connected_layer.c
index 1a5fc2b..642570c 100644
--- a/src/connected_layer.c
+++ b/src/connected_layer.c
@@ -36,14 +36,12 @@
 
 
     float scale = 1./sqrt(inputs);
-    //scale = .01;
     for(i = 0; i < inputs*outputs; ++i){
         layer->weights[i] = scale*rand_normal();
     }
 
     for(i = 0; i < outputs; ++i){
         layer->biases[i] = scale;
-       // layer->biases[i] = 1;
     }
 
 #ifdef GPU
diff --git a/src/convolutional_layer.c b/src/convolutional_layer.c
index 62118e4..6a172aa 100644
--- a/src/convolutional_layer.c
+++ b/src/convolutional_layer.c
@@ -66,12 +66,9 @@
     layer->biases = calloc(n, sizeof(float));
     layer->bias_updates = calloc(n, sizeof(float));
     float scale = 1./sqrt(size*size*c);
-    //scale = .01;
     for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
     for(i = 0; i < n; ++i){
-        //layer->biases[i] = rand_normal()*scale + scale;
         layer->biases[i] = scale;
-        //layer->biases[i] = 1;
     }
     int out_h = convolutional_out_height(*layer);
     int out_w = convolutional_out_width(*layer);
diff --git a/src/darknet.c b/src/darknet.c
index cc3fc07..ab4c7ad 100644
--- a/src/darknet.c
+++ b/src/darknet.c
@@ -222,13 +222,16 @@
     return c;
 }
 
-void train_imagenet(char *cfgfile)
+void train_imagenet(char *cfgfile, char *weightfile)
 {
     float avg_loss = -1;
     srand(time(0));
     char *base = basename(cfgfile);
     printf("%s\n", base);
     network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     //test_learn_bias(*(convolutional_layer *)net.layers[1]);
     //set_learning_network(&net, net.learning_rate, 0, net.decay);
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
@@ -259,16 +262,19 @@
         free_data(train);
         if(i%100==0){
             char buff[256];
-            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.cfg",base, i);
-            save_network(net, buff);
+            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
+            save_weights(net, buff);
         }
     }
 }
 
-void validate_imagenet(char *filename)
+void validate_imagenet(char *filename, char *weightfile)
 {
     int i = 0;
     network net = parse_network_cfg(filename);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
     srand(time(0));
 
     char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
@@ -370,14 +376,14 @@
     float *X = im.data;
     network net = parse_network_cfg(cfgfile);
     set_batch_network(&net, 1);
-    float *predictions = network_predict(net, X);
+    network_predict(net, X);
     image crop = get_network_image_layer(net, 0);
-    //show_image(crop, "cropped");
-   // print_image(crop);
-    //show_image(im, "orig");
+    show_image(crop, "cropped");
+    print_image(crop);
+    show_image(im, "orig");
     float * inter = get_network_output(net);
     pm(1000, 1, inter);
-    //cvWaitKey(0);
+    cvWaitKey(0);
 }
 
 void test_imagenet(char *cfgfile)
@@ -586,7 +592,6 @@
     float *in = calloc(size, sizeof(float));
     int i;
     for(i = 0; i < size; ++i) in[i] = rand_normal();
-    float *in_gpu = cuda_make_array(in, size);
     convolutional_layer layer = *(convolutional_layer *)net.layers[0];
     int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
     cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
@@ -703,14 +708,18 @@
 {
     int i;
     for(i = index; i < argc-1; ++i) argv[i] = argv[i+1];
+    argv[i] = 0;
 }
 
 int find_arg(int argc, char* argv[], char *arg)
 {
     int i;
-    for(i = 0; i < argc; ++i) if(0==strcmp(argv[i], arg)) {
-        del_arg(argc, argv, i);
-        return 1;
+    for(i = 0; i < argc; ++i) {
+        if(!argv[i]) continue;
+        if(0==strcmp(argv[i], arg)) {
+            del_arg(argc, argv, i);
+            return 1;
+        }
     }
     return 0;
 }
@@ -719,6 +728,7 @@
 {
     int i;
     for(i = 0; i < argc-1; ++i){
+        if(!argv[i]) continue;
         if(0==strcmp(argv[i], arg)){
             def = atoi(argv[i+1]);
             del_arg(argc, argv, i);
@@ -729,6 +739,20 @@
     return def;
 }
 
+void scale_rate(char *filename, float scale)
+{
+    // Ready for some weird shit??
+    FILE *fp = fopen(filename, "r+b");
+    if(!fp) file_error(filename);
+    float rate = 0;
+    fread(&rate, sizeof(float), 1, fp);
+    printf("Scaling learning rate from %f to %f\n", rate, rate*scale);
+    rate = rate*scale;
+    fseek(fp, 0, SEEK_SET);
+    fwrite(&rate, sizeof(float), 1, fp);
+    fclose(fp);
+}
+
 int main(int argc, char **argv)
 {
     //test_convolutional_layer();
@@ -765,12 +789,12 @@
     else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
     else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
     else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
-    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
     //else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
     else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
     else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
     else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
-    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
+    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
     else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
     else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2]);
     else if(argc < 4){
@@ -778,6 +802,7 @@
         return 0;
     }
     else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
+    else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
     fprintf(stderr, "Success!\n");
     return 0;
 }
diff --git a/src/parser.c b/src/parser.c
index a00feec..6a107cc 100644
--- a/src/parser.c
+++ b/src/parser.c
@@ -103,7 +103,7 @@
     parse_data(weights, layer->filters, c*n*size*size);
     parse_data(biases, layer->biases, n);
     #ifdef GPU
-    push_convolutional_layer(*layer);
+    if(weights || biases) push_convolutional_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -137,7 +137,7 @@
     parse_data(biases, layer->biases, output);
     parse_data(weights, layer->weights, input*output);
     #ifdef GPU
-    push_connected_layer(*layer);
+    if(weights || biases) push_connected_layer(*layer);
     #endif
     option_unused(options);
     return layer;
@@ -597,6 +597,82 @@
     fprintf(fp, "\n");
 }
 
+void save_weights(network net, char *filename)
+{
+    printf("Saving weights to %s\n", filename);
+    FILE *fp = fopen(filename, "w");
+    if(!fp) file_error(filename);
+
+    fwrite(&net.learning_rate, sizeof(float), 1, fp);
+    fwrite(&net.momentum, sizeof(float), 1, fp);
+    fwrite(&net.decay, sizeof(float), 1, fp);
+    fwrite(&net.seen, sizeof(int), 1, fp);
+
+    int i;
+    for(i = 0; i < net.n; ++i){
+        if(net.types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_convolutional_layer(layer);
+            }
+            #endif
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fwrite(layer.biases, sizeof(float), layer.n, fp);
+            fwrite(layer.filters, sizeof(float), num, fp);
+        }
+        if(net.types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net.layers[i];
+            #ifdef GPU
+            if(gpu_index >= 0){
+                pull_connected_layer(layer);
+            }
+            #endif
+            fwrite(layer.biases, sizeof(float), layer.outputs, fp);
+            fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+        }
+    }
+    fclose(fp);
+}
+
+void load_weights(network *net, char *filename)
+{
+    printf("Loading weights from %s\n", filename);
+    FILE *fp = fopen(filename, "r");
+    if(!fp) file_error(filename);
+
+    fread(&net->learning_rate, sizeof(float), 1, fp);
+    fread(&net->momentum, sizeof(float), 1, fp);
+    fread(&net->decay, sizeof(float), 1, fp);
+    fread(&net->seen, sizeof(int), 1, fp);
+    set_learning_network(net, net->learning_rate, net->momentum, net->decay);
+    
+    int i;
+    for(i = 0; i < net->n; ++i){
+        if(net->types[i] == CONVOLUTIONAL){
+            convolutional_layer layer = *(convolutional_layer *) net->layers[i];
+            int num = layer.n*layer.c*layer.size*layer.size;
+            fread(layer.biases, sizeof(float), layer.n, fp);
+            fread(layer.filters, sizeof(float), num, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_convolutional_layer(layer);
+            }
+            #endif
+        }
+        if(net->types[i] == CONNECTED){
+            connected_layer layer = *(connected_layer *) net->layers[i];
+            fread(layer.biases, sizeof(float), layer.outputs, fp);
+            fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
+            #ifdef GPU
+            if(gpu_index >= 0){
+                push_connected_layer(layer);
+            }
+            #endif
+        }
+    }
+    fclose(fp);
+}
 
 void save_network(network net, char *filename)
 {
diff --git a/src/parser.h b/src/parser.h
index 891e658..2e8190e 100644
--- a/src/parser.h
+++ b/src/parser.h
@@ -4,5 +4,7 @@
 
 network parse_network_cfg(char *filename);
 void save_network(network net, char *filename);
+void save_weights(network net, char *filename);
+void load_weights(network *net, char *filename);
 
 #endif
diff --git a/src/server.c b/src/server.c
index 788ac87..6e5105e 100644
--- a/src/server.c
+++ b/src/server.c
@@ -50,28 +50,6 @@
     network net;
 } connection_info;
 
-void read_all(int fd, char *buffer, size_t bytes)
-{
-    //printf("Want %d\n", bytes);
-    size_t n = 0;
-    while(n < bytes){
-        int next = read(fd, buffer + n, bytes-n);
-        if(next <= 0) error("read failed");
-        n += next;
-    }
-}
-
-void write_all(int fd, char *buffer, size_t bytes)
-{
-    //printf("Writ %d\n", bytes);
-    size_t n = 0;
-    while(n < bytes){
-        int next = write(fd, buffer + n, bytes-n);
-        if(next <= 0) error("write failed");
-        n += next;
-    }
-}
-
 void read_and_add_into(int fd, float *a, int n)
 {
     float *buff = calloc(n, sizeof(float));
diff --git a/src/utils.c b/src/utils.c
index 8261682..bf02ff3 100644
--- a/src/utils.c
+++ b/src/utils.c
@@ -2,6 +2,7 @@
 #include <stdlib.h>
 #include <string.h>
 #include <math.h>
+#include <unistd.h>
 #include <float.h>
 #include <limits.h>
 
@@ -148,6 +149,27 @@
     return line;
 }
 
+void read_all(int fd, char *buffer, size_t bytes)
+{
+    size_t n = 0;
+    while(n < bytes){
+        int next = read(fd, buffer + n, bytes-n);
+        if(next <= 0) error("read failed");
+        n += next;
+    }
+}
+
+void write_all(int fd, char *buffer, size_t bytes)
+{
+    size_t n = 0;
+    while(n < bytes){
+        size_t next = write(fd, buffer + n, bytes-n);
+        if(next <= 0) error("write failed");
+        n += next;
+    }
+}
+
+
 char *copy_string(char *s)
 {
     char *copy = malloc(strlen(s)+1);
diff --git a/src/utils.h b/src/utils.h
index daf3a41..e233da8 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -4,6 +4,8 @@
 #include <time.h>
 #include "list.h"
 
+void read_all(int fd, char *buffer, size_t bytes);
+void write_all(int fd, char *buffer, size_t bytes);
 char *find_replace(char *str, char *orig, char *rep);
 void error(const char *s);
 void malloc_error();

--
Gitblit v1.10.0