From 31f5178c84355483bb8d72eb665e5bad2a8e055e Mon Sep 17 00:00:00 2001
From: Alexey <AlexeyAB@users.noreply.github.com>
Date: Sat, 05 Aug 2017 11:36:51 +0000
Subject: [PATCH] Update Readme.md

---
 src/detection_layer.c |   82 +++++++++++++++++++++++++++++++++++++----
 1 files changed, 74 insertions(+), 8 deletions(-)

diff --git a/src/detection_layer.c b/src/detection_layer.c
index 90b672b..cd98b4b 100644
--- a/src/detection_layer.c
+++ b/src/detection_layer.c
@@ -22,13 +22,20 @@
     l.coords = coords;
     l.rescore = rescore;
     l.side = side;
+    l.w = side;
+    l.h = side;
     assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
     l.cost = calloc(1, sizeof(float));
     l.outputs = l.inputs;
     l.truths = l.side*l.side*(1+l.coords+l.classes);
     l.output = calloc(batch*l.outputs, sizeof(float));
     l.delta = calloc(batch*l.outputs, sizeof(float));
+
+    l.forward = forward_detection_layer;
+    l.backward = backward_detection_layer;
 #ifdef GPU
+    l.forward_gpu = forward_detection_layer_gpu;
+    l.backward_gpu = backward_detection_layer_gpu;
     l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
     l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
 #endif
@@ -44,17 +51,16 @@
     int locations = l.side*l.side;
     int i,j;
     memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
+    //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
     int b;
     if (l.softmax){
         for(b = 0; b < l.batch; ++b){
             int index = b*l.inputs;
             for (i = 0; i < locations; ++i) {
                 int offset = i*l.classes;
-                softmax_array(l.output + index + offset, l.classes, 1,
+                softmax(l.output + index + offset, l.classes, 1,
                         l.output + index + offset);
             }
-            int offset = locations*l.classes;
-            activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
         }
     }
     if(state.train){
@@ -133,6 +139,9 @@
                         best_index = 0;
                     }
                 }
+                if(l.random && *(state.net.seen) < 64000){
+                    best_index = rand()%l.n;
+                }
 
                 int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
                 int tbox_index = truth_index + 1 + l.classes;
@@ -170,12 +179,40 @@
                 avg_iou += iou;
                 ++count;
             }
-            if(l.softmax){
-                gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords), 
-                        LOGISTIC, l.delta + index + locations*l.classes);
-            }
         }
+
+        if(0){
+            float *costs = calloc(l.batch*locations*l.n, sizeof(float));
+            for (b = 0; b < l.batch; ++b) {
+                int index = b*l.inputs;
+                for (i = 0; i < locations; ++i) {
+                    for (j = 0; j < l.n; ++j) {
+                        int p_index = index + locations*l.classes + i*l.n + j;
+                        costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
+                    }
+                }
+            }
+            int indexes[100];
+            top_k(costs, l.batch*locations*l.n, 100, indexes);
+            float cutoff = costs[indexes[99]];
+            for (b = 0; b < l.batch; ++b) {
+                int index = b*l.inputs;
+                for (i = 0; i < locations; ++i) {
+                    for (j = 0; j < l.n; ++j) {
+                        int p_index = index + locations*l.classes + i*l.n + j;
+                        if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
+                    }
+                }
+            }
+            free(costs);
+        }
+
+
+        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+
+
         printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
+        //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
     }
 }
 
@@ -184,6 +221,35 @@
     axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
 }
 
+void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+{
+    int i,j,n;
+    float *predictions = l.output;
+    //int per_cell = 5*num+classes;
+    for (i = 0; i < l.side*l.side; ++i){
+        int row = i / l.side;
+        int col = i % l.side;
+        for(n = 0; n < l.n; ++n){
+            int index = i*l.n + n;
+            int p_index = l.side*l.side*l.classes + i*l.n + n;
+            float scale = predictions[p_index];
+            int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
+            boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
+            boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
+            boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
+            boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
+            for(j = 0; j < l.classes; ++j){
+                int class_index = i*l.classes;
+                float prob = scale*predictions[class_index+j];
+                probs[index][j] = (prob > thresh) ? prob : 0;
+            }
+            if(only_objectness){
+                probs[index][0] = scale;
+            }
+        }
+    }
+}
+
 #ifdef GPU
 
 void forward_detection_layer_gpu(const detection_layer l, network_state state)
@@ -201,7 +267,7 @@
         cuda_pull_array(state.truth, truth_cpu, num_truth);
     }
     cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
-    network_state cpu_state;
+    network_state cpu_state = state;
     cpu_state.train = state.train;
     cpu_state.truth = truth_cpu;
     cpu_state.input = in_cpu;

--
Gitblit v1.10.0