From 351996d9f0390ef44412fa678bc7a073a94e23e5 Mon Sep 17 00:00:00 2001
From: AlexeyAB <alexeyab84@gmail.com>
Date: Thu, 16 Mar 2017 18:49:36 +0000
Subject: [PATCH] Fixed memory leak in DLL, added load_image() & free_image(), added read_names_from_file()

---
 src/detector.c |  402 ++++++++++++++++++++++++++++++++++++++-------------------
 1 files changed, 267 insertions(+), 135 deletions(-)

diff --git a/src/detector.c b/src/detector.c
index 9498750..7535df8 100644
--- a/src/detector.c
+++ b/src/detector.c
@@ -1,32 +1,49 @@
 #include "network.h"
-#include "detection_layer.h"
+#include "region_layer.h"
 #include "cost_layer.h"
 #include "utils.h"
 #include "parser.h"
 #include "box.h"
+#include "demo.h"
+#include "option_list.h"
 
 #ifdef OPENCV
 #include "opencv2/highgui/highgui_c.h"
 #endif
+static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
-static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-static image voc_labels[20];
-
-void train_detector(char *cfgfile, char *weightfile)
+void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
 {
-    char *train_images = "/data/voc/train.txt";
-    char *backup_directory = "/home/pjreddie/backup/";
+    list *options = read_data_cfg(datacfg);
+    char *train_images = option_find_str(options, "train", "data/train.list");
+    char *backup_directory = option_find_str(options, "backup", "/backup/");
+
     srand(time(0));
     char *base = basecfg(cfgfile);
     printf("%s\n", base);
     float avg_loss = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
+    network *nets = calloc(ngpus, sizeof(network));
+
+    srand(time(0));
+    int seed = rand();
+    int i;
+    for(i = 0; i < ngpus; ++i){
+        srand(seed);
+#ifdef GPU
+        cuda_set_device(gpus[i]);
+#endif
+        nets[i] = parse_network_cfg(cfgfile);
+        if(weightfile){
+            load_weights(&nets[i], weightfile);
+        }
+        if(clear) *nets[i].seen = 0;
+        nets[i].learning_rate *= ngpus;
     }
+    srand(time(0));
+    network net = nets[0];
+
+    int imgs = net.batch * net.subdivisions * ngpus;
     printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions;
-    int i = *net.seen/imgs;
     data train, buffer;
 
     layer l = net.layers[net.n - 1];
@@ -49,93 +66,124 @@
     args.num_boxes = l.max_boxes;
     args.d = &buffer;
     args.type = DETECTION_DATA;
+    args.threads = 8;
 
     args.angle = net.angle;
     args.exposure = net.exposure;
     args.saturation = net.saturation;
     args.hue = net.hue;
 
-    pthread_t load_thread = load_data_in_thread(args);
+    pthread_t load_thread = load_data(args);
     clock_t time;
+    int count = 0;
     //while(i*imgs < N*120){
     while(get_current_batch(net) < net.max_batches){
-        i += 1;
+		if(l.random && count++%10 == 0){
+            printf("Resizing\n");
+            int dim = (rand() % 10 + 10) * 32;
+            if (get_current_batch(net)+100 > net.max_batches) dim = 544;
+            //int dim = (rand() % 4 + 16) * 32;
+            printf("%d\n", dim);
+            args.w = dim;
+            args.h = dim;
+
+            pthread_join(load_thread, 0);
+            train = buffer;
+            free_data(train);
+            load_thread = load_data(args);
+
+            for(i = 0; i < ngpus; ++i){
+                resize_network(nets + i, dim, dim);
+            }
+            net = nets[0];
+        }
         time=clock();
         pthread_join(load_thread, 0);
         train = buffer;
-        load_thread = load_data_in_thread(args);
+        load_thread = load_data(args);
 
-/*
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-            box b = float_to_box(train.y.vals[10] + 1 + k*5);
-            if(!b.x) break;
-            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
-        }
-        image im = float_to_image(448, 448, 3, train.X.vals[10]);
-        int k;
-        for(k = 0; k < l.max_boxes; ++k){
-            box b = float_to_box(train.y.vals[10] + 1 + k*5);
-            printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
-            draw_bbox(im, b, 8, 1,0,0);
-        }
-        save_image(im, "truth11");
-*/
+        /*
+           int k;
+           for(k = 0; k < l.max_boxes; ++k){
+           box b = float_to_box(train.y.vals[10] + 1 + k*5);
+           if(!b.x) break;
+           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
+           }
+           image im = float_to_image(448, 448, 3, train.X.vals[10]);
+           int k;
+           for(k = 0; k < l.max_boxes; ++k){
+           box b = float_to_box(train.y.vals[10] + 1 + k*5);
+           printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
+           draw_bbox(im, b, 8, 1,0,0);
+           }
+           save_image(im, "truth11");
+         */
 
         printf("Loaded: %lf seconds\n", sec(clock()-time));
 
         time=clock();
-        float loss = train_network(net, train);
+        float loss = 0;
+#ifdef GPU
+        if(ngpus == 1){
+            loss = train_network(net, train);
+        } else {
+            loss = train_networks(nets, ngpus, train, 4);
+        }
+#else
+        loss = train_network(net, train);
+#endif
         if (avg_loss < 0) avg_loss = loss;
         avg_loss = avg_loss*.9 + loss*.1;
 
-        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        i = get_current_batch(net);
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
         if(i%1000==0 || (i < 1000 && i%100 == 0)){
+#ifdef GPU
+            if(ngpus != 1) sync_nets(nets, ngpus, 0);
+#endif
             char buff[256];
             sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
             save_weights(net, buff);
         }
         free_data(train);
     }
+#ifdef GPU
+    if(ngpus != 1) sync_nets(nets, ngpus, 0);
+#endif
     char buff[256];
     sprintf(buff, "%s/%s_final.weights", backup_directory, base);
     save_weights(net, buff);
 }
 
-static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
+
+static int get_coco_image_id(char *filename)
 {
-    int i,j,n;
-    //int per_cell = 5*num+classes;
-    for (i = 0; i < side*side; ++i){
-        int row = i / side;
-        int col = i % side;
-        for(n = 0; n < num; ++n){
-            int index = i*num + n;
-            int p_index = index * (classes + 5) + 4;
-            float scale = predictions[p_index];
-            int box_index = index * (classes + 5);
-            boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
-            boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
-            if(0){
-                boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w;
-                boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h;
-            }
-            boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
-            boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
-            if(1){
-                boxes[index].x = ((col + .5)/side + predictions[box_index + 0] * .5) * w;
-                boxes[index].y = ((row + .5)/side + predictions[box_index + 1] * .5) * h;
-                boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w;
-                boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h;
-            }
-            for(j = 0; j < classes; ++j){
-                int class_index = index * (classes + 5) + 5;
-                float prob = scale*predictions[class_index+j];
-                probs[index][j] = (prob > thresh) ? prob : 0;
-            }
-            if(only_objectness){
-                probs[index][0] = scale;
-            }
+    char *p = strrchr(filename, '_');
+    return atoi(p+1);
+}
+
+static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
+{
+    int i, j;
+    int image_id = get_coco_image_id(image_path);
+    for(i = 0; i < num_boxes; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        float bx = xmin;
+        float by = ymin;
+        float bw = xmax - xmin;
+        float bh = ymax - ymin;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
         }
     }
 }
@@ -161,8 +209,40 @@
     }
 }
 
-void validate_detector(char *cfgfile, char *weightfile)
+void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
 {
+    int i, j;
+    for(i = 0; i < total; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for(j = 0; j < classes; ++j){
+            int class = j;
+            if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
+{
+    int j;
+    list *options = read_data_cfg(datacfg);
+    char *valid_images = option_find_str(options, "valid", "data/train.list");
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char *prefix = option_find_str(options, "results", "results");
+    char **names = get_labels(name_list);
+    char *mapf = option_find_str(options, "map", 0);
+    int *map = 0;
+    if (mapf) map = read_map(mapf);
+
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
@@ -171,35 +251,50 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    char *base = "results/comp4_det_test_";
-    //list *plist = get_paths("data/voc.2007.test");
-    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
-    //list *plist = get_paths("data/voc.2012.test");
+    char *base = "comp4_det_test_";
+    list *plist = get_paths(valid_images);
     char **paths = (char **)list_to_array(plist);
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int side = l.w;
 
-    int j;
-    FILE **fps = calloc(classes, sizeof(FILE *));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
-        fps[j] = fopen(buff, "w");
+    char buff[1024];
+    char *type = option_find_str(options, "eval", "voc");
+    FILE *fp = 0;
+    FILE **fps = 0;
+    int coco = 0;
+    int imagenet = 0;
+    if(0==strcmp(type, "coco")){
+        snprintf(buff, 1024, "%s/coco_results.json", prefix);
+        fp = fopen(buff, "w");
+        fprintf(fp, "[\n");
+        coco = 1;
+    } else if(0==strcmp(type, "imagenet")){
+        snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
+        fp = fopen(buff, "w");
+        imagenet = 1;
+        classes = 200;
+    } else {
+        fps = calloc(classes, sizeof(FILE *));
+        for(j = 0; j < classes; ++j){
+            snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
+            fps[j] = fopen(buff, "w");
+        }
     }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+
+
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
     int t;
 
-    float thresh = .001;
-    float nms = .5;
+    float thresh = .005;
+    float nms = .45;
 
-    int nthreads = 2;
+    int nthreads = 4;
     image *val = calloc(nthreads, sizeof(image));
     image *val_resized = calloc(nthreads, sizeof(image));
     image *buf = calloc(nthreads, sizeof(image));
@@ -235,19 +330,30 @@
             char *path = paths[i+t-nthreads];
             char *id = basecfg(path);
             float *X = val_resized[t].data;
-            float *predictions = network_predict(net, X);
+            network_predict(net, X);
             int w = val[t].w;
             int h = val[t].h;
-            convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
-            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
-            print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
+            get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
+            if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
+            if (coco){
+                print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            } else if (imagenet){
+                print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            } else {
+                print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
+            }
             free(id);
             free_image(val[t]);
             free_image(val_resized[t]);
         }
     }
     for(j = 0; j < classes; ++j){
-        fclose(fps[j]);
+        if(fps) fclose(fps[j]);
+    }
+    if(coco){
+        fseek(fp, -2, SEEK_CUR); 
+        fprintf(fp, "\n]\n");
+        fclose(fp);
     }
     fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
 }
@@ -262,25 +368,16 @@
     fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
     srand(time(0));
 
-    char *base = "results/comp4_det_test_";
     list *plist = get_paths("data/voc.2007.test");
     char **paths = (char **)list_to_array(plist);
 
     layer l = net.layers[net.n-1];
     int classes = l.classes;
-    int square = l.sqrt;
-    int side = l.side;
 
     int j, k;
-    FILE **fps = calloc(classes, sizeof(FILE *));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
-        fps[j] = fopen(buff, "w");
-    }
-    box *boxes = calloc(side*side*l.n, sizeof(box));
-    float **probs = calloc(side*side*l.n, sizeof(float *));
-    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
+    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
 
     int m = plist->size;
     int i=0;
@@ -299,18 +396,19 @@
         image orig = load_image_color(path, 0, 0);
         image sized = resize_image(orig, net.w, net.h);
         char *id = basecfg(path);
-        float *predictions = network_predict(net, sized.data);
-        convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
-        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
+        network_predict(net, sized.data);
+        get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0);
+        if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
 
-        char *labelpath = find_replace(path, "images", "labels");
-        labelpath = find_replace(labelpath, "JPEGImages", "labels");
-        labelpath = find_replace(labelpath, ".jpg", ".txt");
-        labelpath = find_replace(labelpath, ".JPEG", ".txt");
+        char labelpath[4096];
+        find_replace(path, "images", "labels", labelpath);
+        find_replace(labelpath, "JPEGImages", "labels", labelpath);
+        find_replace(labelpath, ".jpg", ".txt", labelpath);
+        find_replace(labelpath, ".JPEG", ".txt", labelpath);
 
         int num_labels = 0;
         box_label *truth = read_boxes(labelpath, &num_labels);
-        for(k = 0; k < side*side*l.n; ++k){
+        for(k = 0; k < l.w*l.h*l.n; ++k){
             if(probs[k][0] > thresh){
                 ++proposals;
             }
@@ -319,7 +417,7 @@
             ++total;
             box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
             float best_iou = 0;
-            for(k = 0; k < side*side*l.n; ++k){
+            for(k = 0; k < l.w*l.h*l.n; ++k){
                 float iou = box_iou(boxes[k], t);
                 if(probs[k][0] > thresh && iou > best_iou){
                     best_iou = iou;
@@ -338,15 +436,17 @@
     }
 }
 
-void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
+void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
 {
+    list *options = read_data_cfg(datacfg);
+    char *name_list = option_find_str(options, "names", "data/names.list");
+    char **names = get_labels(name_list);
 
+    image **alphabet = load_alphabet();
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
         load_weights(&net, weightfile);
     }
-    detection_layer l = net.layers[net.n-1];
-    l.side = l.w;
     set_batch_network(&net, 1);
     srand(2222222);
     clock_t time;
@@ -354,9 +454,6 @@
     char *input = buff;
     int j;
     float nms=.4;
-    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
-    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
-    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
     while(1){
         if(filename){
             strncpy(input, filename, 256);
@@ -369,19 +466,26 @@
         }
         image im = load_image_color(input,0,0);
         image sized = resize_image(im, net.w, net.h);
+        layer l = net.layers[net.n-1];
+
+        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
+        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
+        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
+
         float *X = sized.data;
         time=clock();
-        float *predictions = network_predict(net, X);
+        network_predict(net, X);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
-        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
-        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
-        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
+        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
+        if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
+        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
         save_image(im, "predictions");
         show_image(im, "predictions");
 
         free_image(im);
         free_image(sized);
+        free(boxes);
+        free_ptrs((void **)probs, l.w*l.h*l.n);
 #ifdef OPENCV
         cvWaitKey(0);
         cvDestroyAllWindows();
@@ -392,24 +496,52 @@
 
 void run_detector(int argc, char **argv)
 {
-    int i;
-    for(i = 0; i < 20; ++i){
-        char buff[256];
-        sprintf(buff, "data/labels/%s.png", voc_names[i]);
-        voc_labels[i] = load_image_color(buff, 0, 0);
-    }
-
-    float thresh = find_float_arg(argc, argv, "-thresh", .2);
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
+    float thresh = find_float_arg(argc, argv, "-thresh", .24);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
     if(argc < 4){
         fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
         return;
     }
+    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
+    int *gpus = 0;
+    int gpu = 0;
+    int ngpus = 0;
+    if(gpu_list){
+        printf("%s\n", gpu_list);
+        int len = strlen(gpu_list);
+        ngpus = 1;
+        int i;
+        for(i = 0; i < len; ++i){
+            if (gpu_list[i] == ',') ++ngpus;
+        }
+        gpus = calloc(ngpus, sizeof(int));
+        for(i = 0; i < ngpus; ++i){
+            gpus[i] = atoi(gpu_list);
+            gpu_list = strchr(gpu_list, ',')+1;
+        }
+    } else {
+        gpu = gpu_index;
+        gpus = &gpu;
+        ngpus = 1;
+    }
 
-    char *cfg = argv[3];
-    char *weights = (argc > 4) ? argv[4] : 0;
-    char *filename = (argc > 5) ? argv[5]: 0;
-    if(0==strcmp(argv[2], "test")) test_detector(cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
+    int clear = find_arg(argc, argv, "-clear");
+
+    char *datacfg = argv[3];
+    char *cfg = argv[4];
+    char *weights = (argc > 5) ? argv[5] : 0;
+    char *filename = (argc > 6) ? argv[6]: 0;
+    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
+    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
+    else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
     else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) {
+        list *options = read_data_cfg(datacfg);
+        int classes = option_find_int(options, "classes", 20);
+        char *name_list = option_find_str(options, "names", "data/names.list");
+        char **names = get_labels(name_list);
+        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix);
+    }
 }

--
Gitblit v1.10.0