From 352ae7e65b6a74bcd768aa88b866a44c713284c8 Mon Sep 17 00:00:00 2001
From: Joseph Redmon <pjreddie@gmail.com>
Date: Wed, 26 Oct 2016 15:35:44 +0000
Subject: [PATCH] ADAM

---
 src/classifier.c |   75 ++++++++++++++++++++++++++++++-------
 1 files changed, 61 insertions(+), 14 deletions(-)

diff --git a/src/classifier.c b/src/classifier.c
index 208b7ed..a77f9df 100644
--- a/src/classifier.c
+++ b/src/classifier.c
@@ -41,6 +41,22 @@
     return options;
 }
 
+void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves)
+{
+    int j;
+    for(j = 0; j < n; ++j){
+        int parent = hier->parent[j];
+        if(parent >= 0){
+            predictions[j] *= predictions[parent]; 
+        }
+    }
+    if(only_leaves){
+        for(j = 0; j < n; ++j){
+            if(!hier->leaf[j]) predictions[j] = 0;
+        }
+    }
+}
+
 float *get_regression_values(char **labels, int n)
 {
     float *v = calloc(n, sizeof(float));
@@ -99,7 +115,8 @@
     load_args args = {0};
     args.w = net.w;
     args.h = net.h;
-    args.threads = 16;
+    args.threads = 32;
+    args.hierarchy = net.hierarchy;
 
     args.min = net.min_crop;
     args.max = net.max_crop;
@@ -206,6 +223,7 @@
     args.saturation = net.saturation;
     args.hue = net.hue;
     args.size = net.w;
+    args.hierarchy = net.hierarchy;
 
     args.paths = paths;
     args.classes = classes;
@@ -394,6 +412,7 @@
         float *pred = calloc(classes, sizeof(float));
         for(j = 0; j < 10; ++j){
             float *p = network_predict(net, images[j].data);
+            if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             free_image(images[j]);
         }
@@ -454,6 +473,7 @@
         //show_image(crop, "cropped");
         //cvWaitKey(0);
         float *pred = network_predict(net, resized.data);
+        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1);
 
         free_image(im);
         free_image(resized);
@@ -468,6 +488,26 @@
     }
 }
 
+void change_leaves(tree *t, char *leaf_list)
+{
+    list *llist = get_paths(leaf_list);
+    char **leaves = (char **)list_to_array(llist);
+    int n = llist->size;
+    int i,j;
+    int found = 0;
+    for(i = 0; i < t->n; ++i){
+        t->leaf[i] = 0;
+        for(j = 0; j < n; ++j){
+            if (0==strcmp(t->name[i], leaves[j])){
+                t->leaf[i] = 1;
+                ++found;
+                break;
+            }
+        }
+    }
+    fprintf(stderr, "Found %d leaves.\n", found);
+}
+
 
 void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
 {
@@ -482,6 +522,8 @@
     list *options = read_data_cfg(datacfg);
 
     char *label_list = option_find_str(options, "labels", "data/labels.list");
+    char *leaf_list = option_find_str(options, "leaves", 0);
+    if(leaf_list) change_leaves(net.hierarchy, leaf_list);
     char *valid_list = option_find_str(options, "valid", "data/train.list");
     int classes = option_find_int(options, "classes", 2);
     int topk = option_find_int(options, "top", 1);
@@ -513,6 +555,7 @@
         //show_image(crop, "cropped");
         //cvWaitKey(0);
         float *pred = network_predict(net, crop.data);
+        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1);
 
         if(resized.data != im.data) free_image(resized);
         free_image(im);
@@ -573,6 +616,7 @@
             image r = resize_min(im, scales[j]);
             resize_network(&net, r.w, r.h);
             float *p = network_predict(net, r.data);
+            if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1);
             axpy_cpu(classes, 1, p, 1, pred, 1);
             flip_image(r);
             p = network_predict(net, r.data);
@@ -672,8 +716,7 @@
     }
 }
 
-
-void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
+void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
 {
     network net = parse_network_cfg(cfgfile);
     if(weightfile){
@@ -686,7 +729,7 @@
 
     char *name_list = option_find_str(options, "names", 0);
     if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
-    int top = option_find_int(options, "top", 1);
+    if(top == 0) top = option_find_int(options, "top", 1);
 
     int i = 0;
     char **names = get_labels(name_list);
@@ -713,11 +756,13 @@
         float *X = r.data;
         time=clock();
         float *predictions = network_predict(net, X);
-        top_predictions(net, top, indexes);
+        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0);
+        top_k(predictions, net.outputs, top, indexes);
         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
         for(i = 0; i < top; ++i){
             int index = indexes[i];
-            printf("%s: %f\n", names[index], predictions[index]);
+            if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root");
+            else printf("%s: %f\n",names[index], predictions[index]);
         }
         if(r.data != im.data) free_image(r);
         free_image(im);
@@ -899,15 +944,15 @@
         float curr_threat = 0;
         if(1){
             curr_threat = predictions[0] * 0 + 
-                            predictions[1] * .6 + 
-                            predictions[2];
+                predictions[1] * .6 + 
+                predictions[2];
         } else {
             curr_threat = predictions[218] +
-                        predictions[539] + 
-                        predictions[540] + 
-                        predictions[368] + 
-                        predictions[369] + 
-                        predictions[370];
+                predictions[539] + 
+                predictions[540] + 
+                predictions[368] + 
+                predictions[369] + 
+                predictions[370];
         }
         threat = roll * curr_threat + (1-roll) * threat;
 
@@ -1092,6 +1137,7 @@
         show_image(in, "Classifier");
 
         float *predictions = network_predict(net, in_s.data);
+        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1);
         top_predictions(net, top, indexes);
 
         printf("\033[2J");
@@ -1143,6 +1189,7 @@
     }
 
     int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int top = find_int_arg(argc, argv, "-t", 0);
     int clear = find_arg(argc, argv, "-clear");
     char *data = argv[3];
     char *cfg = argv[4];
@@ -1150,7 +1197,7 @@
     char *filename = (argc > 6) ? argv[6]: 0;
     char *layer_s = (argc > 7) ? argv[7]: 0;
     int layer = layer_s ? atoi(layer_s) : -1;
-    if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename);
+    if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
     else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
     else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear);
     else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear);

--
Gitblit v1.10.0